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Recherche 588 Amélioration Génétique et Physiologie Forestières, Institut National Recherche Agronomique, Centre d’Orléans, France, 3 Parque Tecnológico Misiones,
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Abstract

Tree-ring datasets are used in a variety of circumstances, including archeology, climatology, forest ecology, and wood
technology. These data are based on microdensity profiles and consist of a set of tree-ring descriptors, such as ring width or
early/latewood density, measured for a set of individual trees. Because successive rings correspond to successive years, the
resulting dataset is a ring variables 6 trees 6 time datacube. Multivariate statistical analyses, such as principal component
analysis, have been widely used for extracting worthwhile information from ring datasets, but they typically address two-
way matrices, such as ring variables 6 trees or ring variables 6 time. Here, we explore the potential of the partial triadic
analysis (PTA), a multivariate method dedicated to the analysis of three-way datasets, to apprehend the space-time
structure of tree-ring datasets. We analyzed a set of 11 tree-ring descriptors measured in 149 georeferenced individuals of
European larch (Larix decidua Miller) during the period of 1967–2007. The processing of densitometry profiles led to a set of
ring descriptors for each tree and for each year from 1967–2007. The resulting three-way data table was subjected to two
distinct analyses in order to explore i) the temporal evolution of spatial structures and ii) the spatial structure of temporal
dynamics. We report the presence of a spatial structure common to the different years, highlighting the inter-individual
variability of the ring descriptors at the stand scale. We found a temporal trajectory common to the trees that could be
separated into a high and low frequency signal, corresponding to inter-annual variations possibly related to defoliation
events and a long-term trend possibly related to climate change. We conclude that PTA is a powerful tool to unravel and
hierarchize the different sources of variation within tree-ring datasets.
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Introduction

Tree-ring datasets are widely used to reconstruct histories of

disturbance events and forest dynamics [1–3], infer large-scale

patterns of climate variation (dendrochronology) [4–8], assess

trends in tree growth and forest management options [9–11], and

regulate wood production and wood quality by controlling site,

silviculture, and genetics. Tree-ring data based on microdensity

profiles are collected in stems of a set of individual trees, which

contains a number of successive annual rings [12] related to the

age of the tree, since a new ring is added each year. The most

evident structure in a temperate tree ring, especially in conifers, is

the earlywood-latewood succession. The light-colored, low-density

earlywood is the first part of the ring, formed at the beginning of

the growing season (spring and early summer), when temperature

is mild, soil water content is high, and the photoperiod is

increasing. The darker, higher-density latewood forms during the

second part of the growing season (summer and early autumn),

when temperature is higher, soil water content is lower, and the

photoperiod is decreasing. Earlywood and latewood width and

density are variable, and transition from earlywood to latewood is

more or less gradual, affected by species, genetics, tree age, and

environment, including climatic variation from the first part to the

second part of the growing season. Ring width, earlywood width,

latewood width, earlywood density, and latewood density are

frequently used to describe a single ring [13]. A basic microdensity

table for a single annual ring is a two-way matrix containing as

many lines as the number of trees under study and as many

columns as the number of variables used to describe each annual

ring.

A tree-ring dataset is a three-way dataset of the form ring
variables 6 trees 6 time. These datasets are often considered two-

way matrices, such as ring variables 6 trees or ring variables 6
time, and subsequently analyzed by multivariate analyses such as

principal component analysis (PCA) [14]. Unfortunately, this

strategy provides only an incomplete picture of the multivariate

space-time variation within the aforementioned datacube [15].

The recent decades have experienced the development of various

tools to explore and interpret three- or higher way structure of the

data. Popular multiway methods include models from the

PARAFAC [16] and Tucker [17] families and alternative models

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e108332

such as the family of STATIS methods [18,19]. The STATIS
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methods were introduced by L’Hermier des Plantes [20] and

Robert and Escoufier [21] and developed by various authors

[22,23]. Partial triadic analysis is one of the simplest STATIS

methods. It is derived from the triadic analysis [17] and was

introduced in ecology under the name of ‘‘triadic analysis’’ by

Thioulouse and Chessel [15]. Kroonenberg [24] further renamed

the method ‘‘partial triadic analysis’’, emphasizing the difference

between the original triadic analysis. The PTA is an exploratory

multivariable technique based on PCA. In the case of a spatial

structure with repeated measurements, it allows for depicting of

temporal variability of the multivariable spatial structure and/or

the spatial structure of the temporal trajectories. The PTA has

been used in a vast array of situations and disciplines including

limnology [25–28], marine ecology [29], soil ecology [30–34],

landscape ecology [35], hydrology [36], and food science [37],

among others. To our knowledge, however, the potential of PTA

has never been assessed in the framework of tree-ring data

analysis.

The objective of this study was to show how this technique

could be used to explore the variability in a forest tree stand

(spatial structure), where each tree is described using several

annual tree rings (repeated measurements). This dataset was

derived from a set of 149 neighboring, georeferenced trees,

constituting a small forest stand. One increment core was collected

from each tree. A 41-year, annual-ring time series was obtained

from each increment core. Each ring microdensity profile was

described by means of 11 ring variables. Although not involved in

PTA calculations per se, a large climate dataset was available [38]

and could be used to explore possible correlations between average

annual minimum and maximum temperatures (1967–2007) and

some PTA outputs. We explored our data from two points of view:

the analysis depicting the temporal evolution of spatial structures

and that portraying the spatial structure of temporal dynamics.

Statistical aBB ckground

The theoretical background of PTA is available in various

publications [15,24,25,28], and readers are referred to these

publications for a formal presentation of the method. We will focus

here on an application in the context of tree-ring data analysis and

will solely provide an overview of the statistical background. The

PTA is designed to analyze the realizations of a set of random

variables measured in the same individuals (trees in this case) at

different sampling occasions (years of formation of the annual

rings). It is based on PCA [14,39] and processes a three-way table

consisting of a data matrix with three subscripts (Xijt) that stand for

trees, descriptors, and dates (Figure 1). The PTA searches for

structures that are stable across a set of two-way tables derived

from Xijt. This can be considered in two ways: either the focus is

the trees 6 ring descriptors or the dates 6 ring descriptors tables

(Figure 1). The first strategy highlights the temporal variability of

ring microdensity profile spatial structures (Figure 1A), while the

second indicates the spatial structure of temporal trajectories

(Figure 1B). This paper reports both of these complementary

points of view.

The PTA involves three steps: the interstructure, compromise,

and intrastructure analyses [15,23]. Readers are referred to

previous work [23] for a formal definition of these terms. The

goal of the interstructure is to make a typology of the tables. If we

consider the trees 6 descriptors two-way tables, the interstructure

yields a typology of the dates (Figure 1A). In that case, the

typology is based on the analysis of the trees 6 ring descriptors
tables taken as the individuals of PCA [23]. Data preprocessing is

an important step that should be considered carefully [40]. The

two-way tables X (either trees 6 ring descriptors or dates 6 ring
descriptors) were centered and scaled in order to remove the

differences among ring descriptors due to different measurement

units or scales without altering the differences between trees or

sampling dates. The mean of the correlation coefficients for similar

variable j between Xk and Xl defines the vectorial correlation

coefficient R between these tables. The R coefficient ranges from –

1 to +1, since it is the mean of a set of correlation coefficients. The

date typology is obtained from the non-centered PCA of the t 6 t
matrix of the inter-date R coefficients [23] (Figure 1A).

The second step of the PTA consists of analyzing the

compromise table, which is derived from the positive eigenvectors

of the PCA of the interstructure (Figure 1). It contains the factorial

coordinates of the trees (dates) for each microdensity profile

descriptor (see [25] for a graphical representation). The compro-

mise table is a two-way table summarizing the initial three-way

datacube and is analyzed by means of PCA to depict the

multivariate structure common to all tables. If we focus on the

temporal variability of the trees 6 ring descriptors two-way table,

the compromise table will consist of a trees 6ring descriptors two-

way table. In this example, it will encapsulate the multivariable

spatial structure common to dates (Figure 1A and Figure 1 in

[30]).

The last step of PTA is called the intrastructure [15]. It consists

of projecting the initial two-way matrices as complementary tables

upon the axis of the PCA of the compromise. This allows assessing

which table fits (or does not fit) the structure encapsulated in the

compromise. Again, if we consider analyzing the trees 6 ring
descriptors two-way tables along dates, the intrastructure provides

a picture of the departure of the spatial structure observed at each

date from the spatial structure common to all sampling occasions

(Figure 1).

Materials and Methods

Ethics statements
This study was approved by the National des Forêts and allowed

by the municipality of Villar-Saint-Pancrace (Hautes-Alpes,

France). This survey did not involve endangered or protected

species.

Site and species
The study site is located close to Villar-Saint-Pancrace

(44u529N, 6u419E; Hautes-Alpes, France) in the French Alps.

The sampling site used in this study is one of four plots of an

altitudinal gradient extending from 1350–2300 m above sea level

(asl). This experimental site was sampled from 2008–2012 with the

goal of studying the adaptation of larch to climate. The altitude of

the sloping survey plot ranges from 1640–1683 m, and the

vegetation is a continuous natural population of European larch

(Larix decidua Miller). Increment cores were collected at breast

height from 149 trees and used then to study spatial and temporal

relationships between annual ring characteristics and climate.

Genetic markers were also used to investigate genetic diversity and

local adaptations. We focused on the period of 1967–2007, during

which the total annual precipitation ranged from 425.5–

1078.2 mm in Briançon (44u539N, 6u389E), where the nearest

‘‘Météo-France’’ climate station is located. The mean annual

temperature, mean annual temperature of the coldest month,

mean annual temperature of the warmest month, and mean

number of frosty days were 6.32uC, –1.49uC, 15.37uC, and 170,

respectively, during the 1967–2007 period. The soil is a colluviosol

type. More details are available in [38].
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Figure 1. The partial triadic analysis is designed to analyze the realizations of a set of random variables (ring descriptors) measured
on a set of points (trees) at different sampling occasions (dates). This corresponds to a three-way table with three subscripts (Xijt) standing
for trees, descriptors, and dates, respectively. A given dataset can be analyzed from two complementary viewpoints: seeking for either the temporal
evolution of spatial structures (1A) or the spatial structure of temporal dynamics (1B).
doi:10.1371/journal.pone.0108332.g001
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Sampling and measurements
The area of the plot was 5815 m2 and featured 149 trees

homogeneously distributed in space with an inter-individual

separating distance ranging from 1.1–112.4 m. The stand density

was 354 trees/ha, the mean tree age was approximately 150 years,

and the average tree height was about 27 m. Increment cores

collected at breast height (see details below) provided annual ring

data for each tree from 1967–2007 (i.e., 41 successive years [38]).

The numbers and characteristics of the annual rings were

estimated using a microdensitometry approach, which also

allowed estimating the age of each tree. Pith-to-bark radial

increment cores were collected at breast height using a 5.5-mm

Pressler increment borer following a constant north-south

orientation. The samples were dried to 12% water content and

X-rayed [41,42]. The X-ray films were scanned at 4000 dpi. The

microdensity profiles were obtained using the software WIND-

ENDRO (Windendro 2008e, Regent Instruments Canada, Inc.)

[42]. The microdensity profiles were cross-dated (Interdat.exe

version 1.1, Dupouey J-L, unpublished work), and the number of

rings in each increment core was counted. The ring variables

(Table 1) were measured following methods described previously

[43]. Most variables are conventional ones, but others rarely

employed (i.e., the three standard deviation variables) were used.

The majority of these descriptors are based on the earlywood-

latewood model, which divides the ring into two successive and

contrasting parts [44].

The ring variables describe some aspects of the structure of the

whole annual ring. The earlywood variables describe the structure

of the wood formed during the first part of the growing season

when the temperature is mild, the soil water content is high, and

the photoperiod is increasing. The latewood variables describe the

structure of the second part of the ring, which is formed during the

second part of the growing season when the temperature is higher,

the soil water content is lower, and the photoperiod is decreasing.

The emphasis given to ring variables differs according to the

discipline and the objective of the study. For example, earlywood is

known to be by far the most conductive part of the ring; thus,

earlywood density is important for sap conduction. Latewood

maximum density is related to summer temperature and is used by

dendrochronologists to reconstruct past climates. Latewood

proportion and latewood density have been found to be strongly

related to wood mechanical properties, such as the modulus of

elasticity, and can be used to estimate wood value.

The ring data used in this study are provided as supporting

information (Dataset S1) and their change from 1967 to 2007 is

shown in Figure S1.

Data analysis
The ontological tree-ring age has potentially strong effects on

tree-ring width and wood properties [45]. We explored this effect

with our time series running from 1967–2007. In these series, tree

age ranged from approximately 100–250 yr. As a consequence,

the annual ring time series covered a 41-yr period corresponding

to cambial ages ranging from approximately 50–250 yr. Because

the effect of cambial age upon ring variables is significant for ages

,30 yr, we did not observe such an effect in our dataset [38].

All data analyses and graphics preparations were performed

using the R statistical software package [46]. The PTA was

performed using the R package ade4 [47].

The score of the trees upon the first axis of the PCA of the

compromise table was analyzed by means of the Moran’s I
autocorrelogram. We assessed the presence of a significant spatial

structure i.e. a significant departure from randomness, using 1000

random permutations following [48]. The global significance of

the correlogram was statistically assessed using Holm’s correction

for multiple testing as described in Legendre and Legendre [14].

Correlograms were computed using the R package ncf [49].

Results

Depicting the temporal evolution of spatial structures
The first PTA described here aimed at depicting the temporal

evolution of spatial structures (Figure 1A). In that case, the

interstructure analysis allowed for weighing the dates, thus

providing a compromise matrix where more weight is given to

dates exhibiting similar spatial structures. As a consequence, the

compromise picks up spatial structures (i.e., a spatial typology

common to the sampling dates) (Figure 1A). The intrastructure of

this PTA will assess the reproducibility of the former compromise,

which attempts to assess which dates fit the global spatial structure

summarized in the compromise (model) (and which do not) and to

identify the ring variables that might explain these patterns

(Figure 1A).

Interstructure. The interstructure table was a 41641 square

matrix containing the vectorial correlation (R) between the trees6
ring descriptors sub-matrices (Figure 1A). The PCA of this matrix

Table 1. Ring variables used in the study.

Abbreviation Definition Unit

RW Ring width: the length (or width) of the annual ring along the radius mm

LW Latewood percentage: the length of the latewood part of the annual ring along
the radius divided by the ring width (RW). Earlywood percentage is 1 - LW.

mm

RD Mean of the ring microdensity profile g/dm3

ED Mean of the earlywood part of the ring microdensity profile g/dm3

LD Mean of the latewood part of the ring microdensity profile g/dm3

MID Minimum ring density g/dm3

MAD Maximum ring density g/dm3

Co Density contrast: maximum ring density minus minimum ring density g/dm3

RSD Standard deviation of the ring microdensity profile g/dm3

ESD Standard deviation of the earlywood part of the ring microdensity profile g/dm3

LSD Standard deviation of the latewood part of the ring microdensity profile g/dm3

doi:10.1371/journal.pone.0108332.t001
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yielded a clear typology, with the first two principal components

accounting for 61.2 and 9.7% of the total inertia, respectively. The

corresponding correlation circle is given in Figure 2A. All the

dates displayed positive scores upon axis 1, indicating the presence

of a structure common to all dates. The case of the second axis was

somewhat different, as dates displayed positive and negative values

on this axis. Figure 2B shows how coordinates of dates upon both

axes changed from 1967–2007. Whereas no clear trend was

evident from axis 1, overall, the dates displayed increasing

coordinates upon the second axis over the annual ring time series.

Compromise. The compromise table associated with the first

component of the PCA of the interstructure table was a ring
variables 6 tree two-way table. The correlation circle of the PCA

of this compromise is shown in Figure 3A. The first two principal

components accounted for 55.4 and 23.9% of the total inertia,

respectively. The first axis showed opposite effects between trees

having higher latewood density (LD) and maximum ring density

(MAD) with trees for which these variables exhibited lower values.

These variables were associated with descriptors of intra-ring

variation, including the standard deviation of ring microdensity

profile (RSD) and density contrast (Co), and, to a lesser extent, the

standard deviations of the latewood and earlywood parts of the

ring microdensity profiles (LSD and ESD, respectively), which

conveyed larger variability in the latewood density compared to

earlywood. The second axis separated trees with higher intra-ring

density variations (RSD, Co, LSD, and ESD) from trees with

higher earlywood density (ED), higher minimum ring density

(MID), and, to a lesser extent, higher mean ring density (RD).

Since the compromise encapsulates spatial information com-

mon to all annual rings and we are dealing with georeferenced

sampling points, we could explicitly test for departure from spatial

randomness. We first employed a graphical approach by mapping

tree score upon the first axis of the PCA in the geographical space

(Figure 3B). The values appeared to be strongly spatially

correlated with trees, forming patches of positive values alternating

with gaps (negative values). The presence of spatial autocorrelation

was assessed by means of Moran’s I correlogram (Figure S2),

which revealed highly significant departure from randomness (p,

0.05 after Holm’s correction). The spatial correlation analysis

provided an interesting clue toward the spatial scale of these

structures that ranged below roughly 30–40 m, as indicated by the

shape of Moran’s I correlogram. This means that the spatial

structure isolated by PTA, which was common to all sampling

occasions, corresponded to patches of trees with higher values of

MAD, LD, RW, Co, and RSD (i.e., negative coordinates upon

axis 1) and gaps of trees with lower values for these ring descriptors

(i.e., positive coordinates upon axis 1).

Intrastructure. The last step of PTA is intended to reveal

which original table exhibits departures from (or fits) the model

expressed through the compromise. The original tables consisting

of 41 trees 6 ring descriptor tables were projected as comple-

mentary tables onto the first axis of the PCA of the first

compromise table. At each sampling date, we computed the

quantiles (for probabilities of 0.025 and 0.975) of the coordinates

of the 149 trees projected upon the first axis of the PCA of the

compromise. These values were used as bounds to identify the

trees that exhibited the largest differences between a model

common to all dates (i.e., the compromise) (Figure 4). Fifty-three

trees fell out of that envelope at least on one date, 18 of which fell

out only once. A small number of trees differed from the model for

the majority of the sampling dates (e.g., 34 and 30 values out of the

envelope). Nonetheless, the map shown in Figure 4 revealed that

the distribution of these trees displayed no particular spatial

pattern at the plot scale. Figure 5 shows the coordinates of each

ring descriptor as projected upon the first axis of the PCA of the

compromise table for each date. These trajectories fluctuated

according to dates, but their position with respect to each other did

not change much and followed the pattern displayed in the

correlation circle of the PCA of the compromise (Figure 3A).

Depicting the spatial structure of temporal dynamics
(trajectories)

The second set of analyses focused on the construction of a

temporal typology common to each tree, which is equivalent to

extracting the spatially stable part of the temporal structure. For

that purpose, we considered the initial tables of dates 6 ring
descriptors and performed the PTA on the interstructure table

containing inter-tree R coefficients (Figure 1B).

Interstructure. The interstructure table was a 1496149

square matrix containing the vectorial correlation R between the

dates 6 ring descriptor sub-matrices (Figure 1B). The PCA of the

interstructure matrix led to the correlation circle (not shown),

where the two first principal components accounted for 35.0 and

7.0% of the total inertia, respectively. The correlation circle

showed that all trees exhibited a common temporal dynamic,

although it was expressed with more or less intensity depending on

the tree considered.

Compromise. The compromise table associated with the first

component of the previous interstructure analysis was a date 6
ring descriptor table, and the correlation circle of its PCA is shown

in Figure 6. The first (horizontal) and second (vertical) components

accounted for 63.4 and 30.0% of the total inertia, respectively.

This correlation circle is very close to the one displayed in

Figure 3A and expresses the same global pattern. The temporal

typology common to all trees mainly corresponds to years where

trees had higher values of RW, MAD, Co, RSD, and LD, as

indicated by the first axis (Figure 6). Another source of variation

common to all trees opposed years with high and low values of

MID, ED, and RD (axis 2, Figure 6). A convenient way of

displaying the patterns of the years with respect to the axis of the

PCA of the compromise table consists of plotting the coordinates

of each date upon both first and second axes as functions of the

years (Figure 6B). From this plot, it can be seen that the first axis

showed no clear temporal trend; a zigzag shape reflecting the

alternating periods of high or low ring width, ring density, and

latewood density is evident. Years 1972, 1979, 1980, 1996, and

2006 corresponded to high coordinates upon the first axis of the

PCA of the compromise, which indicated particularly low growth

and low latewood density. On the contrary, 1994 and 2000 were

associated with better growth conditions. The coordinates of dates

upon axis 2 smoothly increased from 1967–2007 in the form of a

trend. There was a clear relationship with the mean daily

minimum (r = 0.48, p = 0.0013) and maximum temperatures

(r = 0.54, p = 0.0002) averaged over the growing season (March–

September), as shown in Figure S3.

Figure 2. Interstructure analysis of the partial triadic analysis depicting the temporal evolution of spatial structures. A. Scores of the
sampling dates upon the principal components of the principal component analysis of the inter-date correlation matrix. The first principal
component (horizontal axis) represented 61.2% of the inertia. The second component (vertical axis) accounted for 9.7% of the total inertia. B. Scores
of the sampling dates upon both first and second axes as a function of the years.
doi:10.1371/journal.pone.0108332.g002
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Intrastructure. The intrastructure of the PTA depicting the

spatial structure of temporal dynamics indicates the departure of

certain trees from the common model and the ring descriptors that

could explain the phenomenon. The 149 original dates 6 ring
descriptor data tables were projected upon the first axis of the PCA

of the compromise. At each sampling date, we computed the

quantiles (for probabilities of 0.025 and 0.975) of the coordinates

of the 149 trees projected upon the first axis of the PCA of the

compromise. These values were used as bounds to identify the

trees that exhibited the largest differences between the model

common to all trees (i.e., the compromise). A total of 132 trees

(88.6%) fell outside the envelope at least once during the study

period. Figure 7 shows the number of occasions that each tree fell

outside the envelope. No spatial structure appears, which means

that departure from the compromise is not spatially dependent.

Figure S4 shows the coordinates of each ring descriptor

projected onto the first axis of the PCA of the compromise at

each tree. For most of the ring descriptors, the coordinates upon

axis 1 are fairly homogeneous, indicating a lack of spatial

variability and limited departure from the structure encapsulated

in the compromise. Some limited divergence with respect to the

compromise appeared for the variable ED (negative values for

some trees scattered across the plot), whereas ED had a positive

coordinate onto the first axis of the PCA of the compromise

(Figure 6A). Similarly, several trees displayed positive coordinates

for ESD, while that variable had a negative coordinate in

Figure 6A.

Discussion

Temporal trajectories
The PTA that focused on the spatial structure of temporal

dynamics yielded a temporal typology of wood features that

opposed years where climatic conditions allowed growth to years

where growth was limited with subsequent alteration of wood

characteristics. The PTA showed that the main temporal structure

was the separation between the slow growth during years 1972,

1979, 1980, 1996, and 2006 from the rest of the dates (Figure 6B).

Some years appeared particularly favorable, such as 1994 and

2000. This pattern is fairly common to all trees because individuals

experienced similar climatic conditions due to the relatively small

size of the survey area. In the Alps, larch is recurrently defoliated

by the larch budmoth (Zeiraphera diniana) [50]. Tree defoliation

strongly decreases radial growth and produces anomalies in ring

density variables during the year of defoliation and/or the year

immediately following [51]. A. Roques (personal communication)

Figure 3. Compromise analysis of the partial triadic analysis depicting the temporal evolution of spatial structures. A. Correlation
circle of the principal component analysis of the compromise table (a tree 6 ring descriptors table). The first (horizontal) and second (vertical)
principal components accounted for 55.4 and 23.9% of the inertia, respectively. B. Map of the tree score upon the first axis of the PCA of the
compromise table showing a strong spatial structure with alternating humps and bumps corresponding to patches of negative and positive scores.
The symbol size is proportional to the absolute value of the score. Circles (squares) stand for positive (negative) values.
doi:10.1371/journal.pone.0108332.g003

Figure 4. Intrastructure analysis of the partial triadic analysis depicting the temporal evolution of spatial structures. Map of the trees
showing the number of times each one fell outside of the 95% envelopes of the tree coordinates projected onto the first axis of the principal
component analysis of the compromise for each date.
doi:10.1371/journal.pone.0108332.g004
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provided historical records of defoliation by the larch budmoth in

the Briançon. These data indicated that defoliation occurred in

1971, 1979, 1996, 1997, and 2006 in an experimental site located

6 km from our study site, at 1800 m asl. There is very close

agreement between the direct observations of Zeiraphera defoli-

ation in the URZF experimental site and the outputs of the PTA:

the 1971 defoliation strongly decreased 1972 annual ring width

and latewood formation; the 1979 defoliation affected both 1979

and 1980 rings; the 1996–1997 defoliation affected the 1996 and

1997 rings; and the 2006 defoliation only affected the 2006 annual

ring.

Equally interesting is the trend identified in the second axis of

the PCA of the compromise (Figure 6B). Such an effect may be

related to longer-term climate evolution (e.g., temperature

increase, as suggested in this study) (Figure S3). This is consistent

with other results indicating that the mean annual temperature at

Briançon increased by about 1.5uC from 1967–2007, which may

have modified the annual ring structure (Figure S3) [38]. In the

present survey, temporal changes of wood quality primarily

involved a decrease of earlywood density and an increase of

latewood density as well as a decrease of ring homogeneity. This is

consistent with the conclusions of a recent survey on Siberian larch

(a species closely related to European larch), which showed that

warming favors wider earlywood cell lumen (i.e., lower density

earlywood), thicker latewood walls (i.e., higher density latewood),

denser maximum latewood, and wider rings [52]. Both the

Zeiraphera defoliation and the temperature trend affected the

temporal dynamics of tree-ring characteristics in a similar way for

all trees, and a limited number of individuals displayed departure

from that model for some ring descriptors (Figures 7 and S4). This

rather homogeneous response of trees to climate could differ in

other situations, such as field trials, where various families of

genetically selected trees are planted (see below).

It should be noted that some factors may markedly affect tree

ring variables, such as cambial age, competition, or heartwood

formation. Here, we did not consider these factors because we

focused on illustrating the methodology and the use of PTA, for

which raw data appeared to be the best option. In some situations

however, it may necessary to adjust the annual ring time series

according to the objective of the study. While no adjustment is

necessary for a wood quality study, it is generally mandatory for

climatic or ecological studies.

Spatial variability at the plot scale
The results reported in this paper highlight both the spatial

structure of a set of descriptors of wood characteristics of

European larch trees and the temporal trajectories of each

individual tree across a series of 41 consecutive years. The PTA

allowed us to clearly identify the presence of a spatial structure of

wood descriptors that was common to all years (i.e., the first PTA

presented in the study). This long-term stand structure appeared

spatially dependent at a short scale. These results suggest that trees

were submitted to contrasting environmental conditions, which

affected their growth and the quality of wood in a manner that is

constant across years. Radial growth traits, such as ring width

Figure 5. Intrastructure analysis of the partial triadic analysis depicting the temporal evolution of spatial structures. Scatter plot
showing the coordinates of the ring variables projected onto the first axis of the principal component analysis of the compromise table across dates.
doi:10.1371/journal.pone.0108332.g005
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Figure 6. Compromise analysis of the partial triadic analysis depicting the spatial structure of temporal dynamics. Correlation circle of
the principal component analysis (PCA) of the compromise table (a date 6descriptor two-way table). The first principal component (horizontal axis)
represented 63.4% of the inertia. The second component (vertical axis) accounted for 30.0% of the total inertia. The first axis expresses the opposition
between dates where ring growth and latewood production was high with less favorable periods. B. Changes of dates coordinate upon the first (solid
line) and second (dashed line) axes of the PCA of the compromise table. The coordinates of the dates onto the first axis showed no temporal trend
but, rather, the presence of punctual events that strongly affected ring descriptors. Dates coordinated onto the second axis revealed a temporal trend
over the period of the survey.
doi:10.1371/journal.pone.0108332.g006
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(RW) and latewood width (LW), are mostly affected by environ-

mental factors, among which the most influential is competition

among trees [53]. For the ring density traits, the portion of the

genetic variation in the total variance is generally much higher

[54].

Soil variability is also a good candidate to explain stand spatial

structure, as it is strongly variable in space at very different scales

[55] and has substantial impact on plants [56]. The slope of the

plot may also constitute an important environmental source of

functional heterogeneity, as it affects water flow and often

corresponds to spatial gradients of soil texture and overall soil

fertility. The present study lacks environmental data allowing to

fully explore the environmental drivers of stand spatial variability,

but one highlight of PTA is that the compromise can easily be

coupled with additional tools, such as spatial statistics. Trees of

interest could be identified and monitored, and complementary

data could be gathered, thus enabling a better exploration of their

relationships with abiotic or biotic environmental factors (i.e.,

neighboring trees could be incorporated into additional analyses to

assess the competition and other micro-environmental effects).

The potential of PTA in tree-ring dataset analyses
The PTA proved to be a precious tool by allowing the proper

identification of spatial structures common to all dates and

exploration of their potential links with environmental drivers (e.g.,

soil fertility or water status). An obvious highlight of the approach

was that it also allowed a direct access to temporal trajectories

common to all trees. In many different cases, this would be helpful

for exploring correlations with indices of climate change as well as

identifying which ring descriptors (i.e., wood characteristics) are

affected. Multivariate exploration of ring characteristics has been

relatively uncommon. The PTA offers a complete space-time

framework using a relatively simple mathematical basis, since the

central tool is PCA [23] and software resources are available [47].

In our survey, the PTA allowed a proper separation between high

and low frequency signals corresponding to inter-annual variations

(at least partly linked to forest pest/insect outbreaks in this study)

and long-term trends, respectively, possibly related to climate

change. Because the PTA allowed for extraction, quantification,

and hierarchization of these superimposed sources of variation, it

is relevant for climate change research by processing the growing

number of databases documenting tree chronologies that are

compiled and made available [57].

In common garden experiments with genetic entities, the

environmental heterogeneity is largely dictated by the design of the

experiment (e.g., blocks of trees of various genetic lineages). The

PTA would be helpful to stress the common temporal evolution of

all trees, and the intrastructure would discern those lineages that

differ from the common model and for which ring characteristics

differ. The PTA would thus contribute to identifying lineages with

potentially interesting wood characteristics. Considering that the

annual ring variables constitute basic wood properties directly

linked to the value of wood products, PTA could also be used as an

efficient tool to describe variation of overall trunk structure from a

wood-quality standpoint.

Finally, PTA can be seen as a pipeline (i.e., a set of connected

data-processing elements). The output of some elements, such as

the compromise table, can be used in various complementary

Figure 7. Intrastructure analysis of the partial triadic analysis depicting the spatial structure of temporal dynamics. Map of the trees
showing the number of times each one fell outside the 95% envelopes of the tree coordinates projected onto the first axis of the principal
component analysis of the compromise for each date.
doi:10.1371/journal.pone.0108332.g007
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analyses not strictly related to the PTA. We employed this strategy

with the correlogram analysis, but the compromise table may also

be taken as a summary of the data and co-analyzed with external

data tables [14,23,30,33,34,58]. Examples may also include

genetic data describing each tree or data conveying the

between-tree competition within the neighboring environment.

Supporting Information

Figure S1 Changes of tree ring variables from 1967–
2007.
(PDF)

Figure S2 Spatial analysis of the partial triadic analysis
depicting the temporal evolution of spatial structures.
Moran’s I correlogram of the tree scores upon the first axis of the

PCA of the compromise table. Black (open) symbols indicate

significant (non-significant) values at p = 0.05. The spatial structure

proved globally significant (p,0.05) when assessed by means of the

Holm’s correction test for simultaneous testing.

(PDF)

Figure S3 Average daily minimum and maximum

temperatures in Briançon (446539N, 66389E) averaged
over the growing season of the European larch (March–

September) from 1967–2007. Data source: Météo-
France.

(PDF)

Figure S4 Intrastructure analysis of the partial triadic
analysis depicting the spatial structure of temporal
dynamics. Scatter plot showing the coordinates of the ring

variables projected onto the first axis of the principal component

analysis of the compromise table for each tree.

(PDF)

Dataset S1 Ring dataset.
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