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Abstract – Many models are using now in order to can 

study of the table green olives diffusion process. Different 

models had been consistent in order to determinate the 

magnitude order of the diffusion coefficient effectiveness; we 

can to mention the thin plate model, the hollow cylinder and 

the hollow sphere model.  But none them describe 

geometrically in a correct way this fruit. 

For this reason, we had developed a new model to 

spherical and isotropic fruits in order to can to adapt its 

diffusion behavior with the same geometry.  So, all spherical 

isotropic fruit with pit are in conditions of to be treaty with 

this method.  
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I. INTRODUCTION 
 

Shape and size are inseparable in a physical object, and 

both are necessary if the object is to be satisfactorily 

described. Futhre, in definining the shape some 

dimensional parameters of the object must be measured. In 

order to can to model the diffusion process of the solution 

into the spherical fruits with pits; we had developed a 

mathematical and theoretical method. The proposal of this 

work is to get a way in order to describe physically these 

processes and it to know the behavior of the variables and 

parameters that intervene.   

With this model it will be possible to predict and 

calculate the characteristic and property of diffusion 

problem in fruits, and also its evolution on the time. Of 

course, the model has its conditions of application, 

because we had  

 

II. MATERIALS AND METHODS 

 

A. Theoretical Treatment 
We consider the fruit as an isotropic sphere with the 

external radius R0 on the pulp fruit surface (internal skin 

radius), and it has in the centre a pit with radius Ri (pit 

radius), as show below of the figure 1.   

 
Fig1. The scheme of the isotropic spherical olive 

 

The concentration flux J that goes through skin to pulp 

is: 

     (1) 

Where D is the diffusion coefficient; and C is the 

solution concentration gradient. If we resolve the problem 

in spherical coordinates with the assumption mentioned, 

the equation 1 will be: 

     (2)   

We are called at the dimensionless radius expression r = 

R/Ro. So, the diffusion differential equation is: 
𝜕2𝐶

𝜕𝑟2 +
2

𝑟

𝜕𝐶

𝜕𝑟
=

𝜕𝐶

𝐷𝜕𝑡
    (3) 

In order to can resolve the equation 3, we define de 

function : 

𝑢 𝑟, 𝑡 = 𝑐 𝑟, 𝑡 . 𝑟    (4) 

If we replace the equation 4 into the equation 3, and it 

become in: 

 
1

𝐷

𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑟2       (5) 

Now, in order to can resolve the equation 5, we propose 

as solution a function of the form: 

𝑢 𝑟, 𝑡 = 𝐹 𝑟 . 𝑇(𝑡)     (6) 

With the conditions: 

𝑢 𝑟 = 𝑎, 𝑡 = 0 𝑡𝑜 𝑡 > 0     𝑎𝑛𝑑     

𝑢 𝑟 = 1, 𝑡 = 𝐶0 𝑡𝑜 𝑡 > 0. 

Where C0 is the constant concentration at the surface or 

the sphere and = Ri/R0 is the dimensionless radius 

expression of the pit radius that represent the differentially 

surface under the surface pit where C = 0 to t > 0; because 

we assume that there is not flux from the pulp to the inner 

pit.  

If we put this expression into the equation 5, let us: 
1

𝐷𝑇

𝑑𝑇

𝑑𝑡
=

1

𝐹

𝑑2𝐹

𝑑𝑟2 = 𝑚2     (7) 

The left side of the differential equation 7, depend only 

of the time; and the right side depend only of the radius r. 

If both side of equation 7 are equal, the unique possibility 

is that they are equal a constant, we called at this constant 

m
2
.    

Now we can resolve the equation 7 in 2 parts to 

separate: 
1

𝐹

𝑑2𝐹

𝑑𝑟2 = 𝑚2       (8.a) 

1

𝐷𝑇

𝑑𝑇

𝑑𝑡
= 𝑚2      (8.b) 

In order to can resolve the equation 8.a, we propose a 

solution: 
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𝐹 𝑟 =  𝑒∝𝑟         (9) 

If we replace and re-arraying, we can to obtain ∝ =
 ∓𝑚, and the definitive expression to radial function F(r) 

is: 

𝐹 𝑟 = 𝐴. 𝑒𝑚𝑟 + 𝐵. 𝑒−𝑚𝑟     (10) 

Using de condition that 𝑢 𝑟 = 𝑎, 𝑡 = 0 𝑡𝑜 𝑡 > 0 , we ca 

obtain: 

  𝐹 𝑎 = 𝐴. 𝑒𝑚𝑎 + 𝐵. 𝑒−𝑚𝑎 = 0   

then   𝐵 = −𝐴. 𝑒2𝑚𝑎   

If we replace this result into the equation 10, then the 

radial function is: 

𝐹 𝑟 = 𝐴 𝑒𝑚𝑟 − 𝑒𝑚 2𝑎−𝑟      (11) 

In order to find the A expression we can use the other 

boundary condition that establish 𝑢 1, 𝑡 = 𝐶0 𝑡𝑜 𝑡 > 0 , 

so we obtain: 

𝐹 1 = 𝐴 𝑒𝑚 − 𝑒𝑚 2𝑎−1  =  𝐶0  

And removing A, we get: 

𝐴 =  
𝐶0

 𝑒𝑚 −𝑒𝑚 2𝑎−1  
     (12) 

So, the radial function expression is 

𝐹 𝑟 =
𝐶0

 𝑒𝑚 −𝑒𝑚 2𝑎−1  
 𝑒𝑚𝑟 − 𝑒𝑚 2𝑎−𝑟     (13) 

and the 𝑢 𝑟, 𝑡  expression is: 

𝑢 𝑟, 𝑡 =
𝐶0

 𝑒𝑚 −𝑒𝑚  2𝑎−1  
 𝑒𝑚𝑟 − 𝑒𝑚 2𝑎−𝑟  . 𝑇(𝑡)  (14) 

In order to get the complete expression of 𝑢 𝑟, 𝑡  we 

need now to resolve the differential equation 8.b. If we 

assume that the diffusion coefficient D change on the time, 

we need to know the time expression the D with t. We 

consider the lineal approximation of its time serial 

developed, so we assume as the time dependence 

expression of the D: 

𝐷 𝑡 =  𝑎0 + 𝑎1𝑡     (15) 

Where  𝑎0 and  𝑎1 are constant that have the all properties 

and characteristics physics and chemistry of the diffusion 

coefficient D and we must to determinate.  So, we can 

resolve the equation 8.b: 
𝑑𝑇

𝑇
= 𝑚2𝐷 𝑡 𝑑𝑡                        (16) 

Integrating both members we have: 

𝑇 𝑡 = 𝑇0𝑒𝑚2  𝐷 𝑡 𝑑𝑡
𝑡

0      (17) 

Where T0 is the T(0) function value when t=0. In order 

to get the complete expression of the time function T(t); 

we need integrate the equation 15, so we obtain that: 

 𝐷 𝑡 𝑑𝑡 =  𝑎0𝑡 + 𝑎1𝑡2 + 𝑏
𝑡

0
     (18) 

If we replace this result into the equation 17, we obtain: 

𝑇 𝑡 = 𝑇0𝑒𝑚2(𝑎0𝑡+𝑎1𝑡2+𝑏)    (19) 

Then combining this result whit the equation14, the 

complete expression of the 𝑢 𝑟, 𝑡  function is: 

𝑢 𝑟, 𝑡 =
𝑇0 .𝐶0.

 𝑒𝑚 −𝑒𝑚  2𝑎−1  
 𝑒𝑚𝑟 − 𝑒𝑚 2𝑎−𝑟  . 𝑒𝑚2(𝑎0𝑡+𝑎1𝑡2+𝑏) 

     (20) 

and the concentration function C(r,t) that describe its 

behavior is: 

𝐶 𝑟, 𝑡 =
𝑢 𝑟, 𝑡 

𝑟
 

  =
𝑇0 .𝐶0.

 𝑒𝑚 −𝑒𝑚  2𝑎−1  

 𝑒𝑚𝑟 −𝑒𝑚 2𝑎−𝑟  

𝑟
. 𝑒𝑚2(𝑎0𝑡+𝑎1𝑡2+𝑏)     (21) 

We must to find the value of the constants T0, C0, a0, a1 

and b if we want to know the exact solution of C(r,t). In 

order to get these values, we will resort at the experimental 

measure. So if we measure the concentration C(1,t0) on the 

fruit surface at the time t0, the equation 21 will be: 

𝐶 1, 𝑡0 = 𝑇0 . 𝐶0.. 𝑒
𝑚2(𝑎0𝑡0+𝑎1𝑡0

2+𝑏)           (22) 

Then we have: 

𝐶 1, 𝑡0 . 𝑒−𝑚2(𝑎0𝑡0+𝑎1𝑡0
2+𝑏) = 𝑇0. 𝐶0.   (23) 

If we replace the equation 23 in the equation 21, we 

obtain: 

𝐶 𝑟, 𝑡 =
𝐶 1,𝑡0 

 𝑒𝑚 −𝑒𝑚 2𝑎−1  

 𝑒𝑚𝑟 −𝑒𝑚 2𝑎−𝑟  

𝑟
. 𝑒𝑚2 𝑎0 𝑡−𝑡0 +𝑎1 𝑡2−𝑡0

2   

       (24) 

Moreover, we wish to decrease de constant number of 

the equation 24. Then we use the fact that describe before, 

when we saw that C0 is the constant concentration at the 

surface or the sphere and 𝑎= Ri/R0. In other words, the 

temporal derivate of the concentration on the surface is 

zero. Then we have that: 

 
𝜕𝐶 𝑟, 𝑡 

𝜕𝑡
 
𝑟=1

=  𝐶 1, 𝑡0 . 𝑒𝑚2 𝑎0 𝑡−𝑡0 +𝑎1 𝑡2−𝑡0
2  𝑚2 

 𝑎0 𝑡 − 𝑡0 + 𝑎1 𝑡2 − 𝑡0
2   𝑎0 + 𝑎1 . 2. 𝑡 = 0  

Then: 

 𝑎0 𝑡 − 𝑡0 + 𝑎1 𝑡2 − 𝑡0
2   𝑎0 + 𝑎1 . 2. 𝑡 = 0  (25) 

The solutions to equation 25 are: 

𝑎0 = −2𝑎1𝑡   𝑎𝑛𝑑   𝑎0 =  −𝑎1
 𝑡2−𝑡0

2 

 𝑡−𝑡0 
=  −𝑎1 𝑡 + 𝑡0 

    (26) 

If we include this expression in the exponential argument 

of the equation 24, we find that:  

 𝑎0 𝑡 − 𝑡0 + 𝑎1 𝑡2 − 𝑡0
2  =   −2𝑎1 𝑡2 − 𝑡𝑡0 +

𝑎1𝑡2−𝑡02= 𝑎12𝑡𝑡.0−𝑡2−2𝑡02                      (27a) 

and: 

 𝑎0 𝑡 − 𝑡0 + 𝑎1 𝑡2 − 𝑡0
2  =  −𝑎1 𝑡2 − 𝑡0

2 +

𝑎1𝑡2−𝑡02= 0                              (27.b) 

The equation 27.b represent the trivial solution   𝑎1 =
𝑎1, then it do not contribute to get the final expression; so, 

we use the equation 27.a in order to replace into the 

equation 24; and we have that:   

𝐶 𝑟, 𝑡 =
𝐶 1,𝑡0 

 𝑒𝑚 −𝑒𝑚 2𝑎−1  

 𝑒𝑚𝑟 −𝑒𝑚  2𝑎−𝑟  

𝑟
. 𝑒𝑚2𝑎1 2𝑡𝑡.0−𝑡2−2𝑡0

2  

   (t > to)      (28) 

In order to decrease the constant numbers, we can make 

other experimental measure of the C(r,t) at other time t1 on 

the surface, we can to named a this value as C1=C(1,t1), 

we will have: 

𝐶1 = 𝐶 𝑟, 𝑡1 = 𝐶 1, 𝑡0 . 𝑒𝑚2𝑎1 2𝑡1𝑡.0−𝑡1
2−2𝑡0

2  (29) 

Then we can to write: 

𝑚2𝑎1 2𝑡1𝑡.0− 𝑡1
2 − 2𝑡0

2 = ln⁡ 
𝐶 1,𝑡0 

𝐶1
    (30) 

or  𝑎1 =
ln⁡ 

𝐶 1,𝑡0 

𝐶1
 

𝑚2 2𝑡1𝑡.0−𝑡1
2−2𝑡0

2 
    

Now we can introduce the equation 30 into the equation 

28 and we will have: 
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𝐶 𝑟, 𝑡 =  

𝐶 1,𝑡0 

 𝑒𝑚 −𝑒𝑚  2𝑎−1  

 𝑒𝑚𝑟 −𝑒𝑚 2𝑎−𝑟  

𝑟
. 𝑒

 
2𝑡𝑡.0−𝑡2−2𝑡0

2

2𝑡1𝑡.0−𝑡1
2−2𝑡0

2 ln⁡ 
𝐶 1,𝑡0 

𝐶1
 
 

    (31) 

In order to simplify the equation 31, we consider t0 = 0 

without loss generality. So the equation 31 let us: 

𝐶 𝑟, 𝑡 =
𝐶 1,𝑡0 

 𝑒𝑚 −𝑒𝑚 2𝑎−1  

 𝑒𝑚𝑟 −𝑒𝑚  2𝑎−𝑟  

𝑟
. 𝑒

 
t

t1
 

2
ln⁡ 

𝐶 1,𝑡0 

𝐶1
 
  (32) 

The unique constant that is necessary determinate now 

is m. A way possible in order to get know m is to make 

other measurement of the concentration C(r,t) at the time t0 

on a dimensionless radius b between r= a to r=1. So, we 

have: 

𝐶 𝑏, 𝑡0 =  
𝐶 1,𝑡0 

 𝑒𝑚 −𝑒𝑚  2𝑎−1  

 𝑒𝑚𝑏 −𝑒𝑚  2𝑎−𝑏  

𝑏
   (33) 

And if we operate in order to determinate m: 

 𝑒𝑚𝑏 −𝑒𝑚  2𝑎−𝑏  

 𝑒𝑚 −𝑒𝑚 2𝑎−1  
=

𝐶 𝑏,𝑡0 .𝑏

𝐶 1,𝑡0 
     (34)  

 𝑒𝑚𝑏 − 𝑒𝑚 2𝑎−𝑏  =
𝐶 𝑏,𝑡0 .𝑏

𝐶 1,𝑡0 
 𝑒𝑚 − 𝑒𝑚 2𝑎−1   (35) 

or  

 𝑒𝑚𝑏 − 𝑒𝑚 2𝑎−𝑏  −
𝐶 𝑏, 𝑡0 . 𝑏

𝐶 1, 𝑡0 
 𝑒𝑚 − 𝑒𝑚 2𝑎−1  = 0 

We must to use the serial develop of exponential function 

(e
x 
= 1 + x + 

𝑥2

2!
 + …) in the before expression to find the m 

expression. So we have: 

 2𝑚 𝑏 − 𝑎 + 𝑎𝑚2 𝑏 − 2𝑎  −  2𝑚 1 − 𝑎 +

𝑎𝑚21−2𝑎𝐶𝑏,𝑡0.𝑏𝐶1,𝑡0=0                              (36.a) 

or if we divide both members to m we obtain: 

 2 𝑏 − 𝑎 + 𝑎𝑚 𝑏 − 2𝑎  −  2 1 − 𝑎 + 𝑎𝑚 1 −

2𝑎𝐶𝑏,𝑡0.𝑏𝐶1,𝑡0=0                                                         

(36.b) 
and now we can to remove m from to equation eq. 36.b 

𝑚 =
−2

𝑎

  𝑏−𝑎 − 1−𝑎 
𝐶 𝑏,𝑡0 .𝑏

𝐶 1,𝑡0 
 

  𝑏−2𝑎 − 1−2𝑎 
𝐶 𝑏,𝑡0 .𝑏

𝐶 1,𝑡0 
 
    (37) 

We can to determinate de constant m, it making two 

concentration measure C(r, t) at the initial time of the 

experience (t0=0); one on the surface of the fruit pulp (r=1) 

and other a dimensionless radius r=b between r=a, and 

r=1. With these measurements, we can to calculate the m 

value using the equation 37; after with this value, we can 

to use it in the equation 32 in order to describe  the 

behavior of the solution concentration C(r, t) into the fruit 

pulp at any time at any inner radius value that we wish. 

A. The Diffusion Coefficient D: 
We suppose in our work, that the diffusion coefficient D 

is time dependent as show the equation 15. If we use the 

equation 26 to include in equation 15 and remove 𝑎0 we 

obtain: 

𝑎0 = −
𝑎1

2
 3𝑡 + 𝑡0      (38) 

and if we replacing this result into the equation 15, we 

have that: 

𝐷 𝑡 =  𝑎0 + 𝑎1𝑡 =  −
𝑎1

2
 𝑡 + 𝑡0     (39) 

Now, we can replace the expression  𝑎1  from the 

equation 30 into the equation 39, it become in: 

𝐷 𝑡 =  −
𝑎1

2
 𝑡 + 𝑡0 =  −

ln⁡ 
𝐶 1,𝑡0 

𝐶1
 

2𝑚2 2𝑡1𝑡.0−𝑡1
2−2𝑡0

2 
 𝑡 + 𝑡0  

       (40) 

Then, we can to describe also the behavior of the 

diffusion coefficient D with the time using the equation 

40. We can to observe this behavior in the figure 4 made 

to an example with olives.  

 
Fig.2. Graphics of solution concentration C(r,t) 

experimental value vs. time to olives submerged in ClNa. 

 

 
Fig.3. Graphics of solution concentration C(r,t) of the 

theoretical model value vs. time to olives submerged in 

ClNa. 

 

 
Fig.4. Graphics of diffusion coefficient D(t) of the 

theoretical model value vs. time to olives submerged in 

ClNa.. 
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B. Synthesis: 
If we want to know the behavior of the any solution 

concentration into the fruit pulp, at any time and any inner 

radius; it is enough to make three measures: two measures 

at initial time t0, one on the surface of the pulp and another 

on the r=b (dimensionless inner radius between r = a and r 

=1). Moreover we need a last measure of the solution 

concentration C(r, t) that we must to make on the surface 

at a time t posterior t0. With these data we can calculate 

the constant m using the equation 37. 

Finally, we are in capacity to use the equation 32 to 

calculate the solution concentration of any spherical fruit 

at any time in any place into the pulp fruit. In the figure 3 

we can see the graphics of the solution concentration value 

calculated in the time function to different dimensionless 

radius r to an example with olives; it is possible to 

compare this graphics with the experimental value showed 

in the figure 2.   

An important question that we must to consider, it is that 

the equations 32 and 37 are strongly influenced by the 𝑎  

parameter. This fact it mean that we must to calculate by 

separate each fruit that has a different  𝑎 value. We should 

remember that  𝑎 =  
𝑅𝑖

𝑅0
 ; then, we can to affirm that exist 

equivalence to same spherical fruits that have the same 

value of the reason between pit Ri radius and pulp surface 

radius R0 in the diffusion behavior under the same 

conditions. These concepts explain the correct use of the 

antique method called in Spanish as “romaneo”. 

If we want, also we study the behavior of the diffusion 

coefficient using the equation 40.  

            

III. METHODOLOGY OF WORK 
 

In order to understand completely how we must to 

procedure to use the result obtained methodologically, we 

have that follow the next step: 

1. The first step is measure of the Ri and R0 to the fruit 

that we want to study, and with its value we must 

calculate the dimensionless radius  𝑎 =  
𝑅𝑖

𝑅0
 .  

2. In the next step, we must separate fruits in groups with 

the equivalence in the 𝑎 value. This fact corresponding 

to “romaneo” process. In to the practice it is enough to 

separate the fruits with similar surface radius R0. 

3. In the next step, we should to make two initial solution 

concentration measure C(r, t0): one on the surface C(1, 

t0) that we called C0; an another in the inner the pulp at 

the dimensionless r=b (a < b < 1) C(b, t0). 

4. A third measure of the solution concentration measure 

C(r, t) it must be made at the time t1 posterior to t0 on 

the pulp surface that we called C(1, t1) = C1. 

5. With the data of  𝑎  , b, C(b, t0) and C0 we can to 

calculate the m value using the equation 37. 

6.  Now, with the anterior values and the calculus of m, 

we are in conditions to calculate the solution 

concentration C(r, t0) using the equation 32 at any time 

to any radius r value. Of course, we need to use the C1 

in order to resolve it.  

7. If we want to describe the behavior of the diffusion 

coefficient D on the time with the equation 40.  

A. Development of an example of Application: 
The methodology explained above, we had used to olives 

with size that is showed in the table 1 and the table 2. With 

them we had followed the step mentioned and obtained: 

Table 1: Weight olive classification. 
Group Unit by Kg 

A 80 to 120 

B From 121 to 160 

C From 161 to 200 

D From 201 to 240  

E From 242 to 280 

F Bigger to 281 

 

Table 2: Characteristics measures to olives used 
 Weight  

(kg) 

equatorial  

diameter (m) 

Length  

(m) 

skin  

thickness (m) 

Media 5,3x10-3 17.2x10-3 27.6x10-3 4.x10-5 

Variance  0.7x10-3 1.1x10-3 1.9x10-3 0.4x10-5 

 

We had resolved the particular case of the olives 

submerged into ClNa solution, for this case we had 

obtained the follow measure: 

1.  The measures of the Ri and R0 were: R0=0.008 m., and 

Ri 0.0043 m. The calculus of  𝑎 =  
𝑅𝑖

𝑅0
 was 0.005375.  

2. The initial solution concentration measure on the 

surface value was C(1, t0) =  5.9178x10
-4 

mg/g.; and in 

the inner the olive pulp at the dimensionless r = b = 

0.86  the solution concentration measure C(b, t0) was 

3.44 x10
-4 

mg/g.  

3.  The measure of the solution concentration measure C(r, 

t) at the time t1 = 16200 seconds (4 hours 30 minutes) 

posterior to t0 on the pulp surface was C(1, t1) = 8.28 

x10
-4 

mg/g. 

4.  With these data we had calculated the m value using 

the equation 37; and we obtain m= 1.6624 m
-1

. 

5.  Now, with the anterior values and the calculus of m, we 

calculate the solution concentration C(r, t0) using the 

equation 32 at any time to any radius r value, and we 

obtain the value concentration that show in the table 

n°3, and also the curves of the graphics of the figure 3.   

6. We can to describe the behavior of the diffusion 

coefficient D on the time with the equation 40. In our 

example we can observer this fact in the figure 4.  

 

IV. RESULTS AND DISCUSSION 
 

When we compare the experimental measure with the 

theoretical results that show the figures 2 and 3; we can 

get a few observations: 

1.  The magnitude order of results between theoretical and 

empirical value is very close. 

2.  The increase behavior of the concentration C(r,t) with 

the time is similar. 

3.  The disagree that exist between theoretical and 

empirical value may be to many factors: 

3.1 We had assumed when had resolved the diffusion 

differential equation, that the relation between the 

diffusion coefficient D and the time t is lineal. This 

approximation may be not enough good. 



 

 

 

 

Copyright © 2014 IJISM, All right reserved 

165 

International Journal of Innovation in Science and Mathematics 

Volume 2, Issue 1, ISSN (Online): 2347–9051 

 

3.2 We had worked with the olives that are not perfect 

spherical fruits. 

3.3 The data used to theoretical calculus are an average 

over sample with the similar dimension (“romaneo”), 

but we had not used real values that were measured in 

the experience. 

However, we think that results that we obtain to the 

example showed with olives are very good if we consider 

the difference that exist between the real case and the 

theoretical approximation.  

The next step in order to improve the model to olives 

and other fruits with the same form, it is resolve the 

diffusion differential equation in ellipsoidal coordinates.   

 

V. CONCLUSIONS 
 

In according with the equations obtained (32, 37 and 

40), we had get interesting conclusions about of these 

results: 

1.  We had found an approximate theoretical model to 

spherical and isotropic fruits in order to can describe 

the dependence of the concentration with the time in its 

inner to any dimensionless radius r.  

2.  We get to model about of the behavior on the time of 

the diffusion coefficient D when the spherical fruits are 

submerged in any solution. 

3.  We had developed its equations in order to calculate 

the spherical fruits concentration value and the 

diffusion coefficient D to any time and any position 

inner the pulp from the only three experimental 

measures.    

4.  The behavior of the concentration in function of the 

time and radius depend of the Ri and R0 values 

parameters; on others words, to case with different 

values of Ri and R0, will be different respectively. 

These facts are in accord with the empirical treatment 

called “romaneo” in Spanish.  
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