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Abstract

Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites
and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in
signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic
approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of
metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes
in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the
action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were
hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where
no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a
massive increase in the density of correlation networks after infection indicating a complex reprogramming of the
regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the
involvement of a systemic signaling on early miRs alteration.
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Introduction

Plants defend themselves against pathogens using a number of

strategies and over the years much effort has been made to

understand plant-pathogen interactions. The induction of genes

and metabolites acting as defense or counter-defense compounds is

a common feature that either enhances virus disease by

suppressing host defense mechanisms or attenuate the infection

orchestrating defense mechanisms [1,2]. Furthermore, the emerg-

ing virus-host interaction picture suggests a highly complex

network of plant responses and viral counter-responses which

greatly impact in the plant physiology [3]. However, despite our

broad knowledge concerning the infection effect at the whole plant

level, documentation of the metabolic changes associated to this

response remains scarce [4].

Systemic acquired resistance (SAR) and induced systemic

resistance are enhanced states of broad-spectrum disease resistance

in response to signaling and amplification processes triggered by

pathogen infection [5,6,7,8]. During these processes salicylic acid

(SA), as methyl salicylate, and jasmonates (JA) have been proposed

to play crucial roles during long-distance signaling [8,9,10,11,12].

It is well established that several other players are required to

induce SAR such as hormones, lipids or proteins. However, how

the systemic response is orchestrated still remains poorly

characterized [13].

Plants produce an exceptionally large quantity of metabolites,

which display a very broad chemical diversity [14,15]. Thus,

comparing metabolic profiles of infected plants versus their

corresponding controls conceivably represents a powerful tool by

which to unravel the biochemical pathways involved in multi-

factorial disorders.

microRNAs (miRNAs) are small, endogenous RNAs that

regulate gene expression in plants and animals by promoting

cleavage or inhibiting translation of mRNAs coded by specific

target genes [16,17,18,19,20]. miRNAs are involved in regulation

of plant development, signal transduction, expression of transcrip-

tion factors, protein degradation and interestingly are part of the

response to biotic and abiotic stresses. We and others have

demonstrated that after virus infection, miRs levels are altered and

their alteration correlates with symptoms suggesting an important

role of miRNAs in the manifestation of pathogen symptoms

[21,22,23,24]. It was also proposed that miRNAs function is

exploited by the pathogens to regulate host gene expression for

their own benefit [25,26,27,28,29,30,31,32]. However, the

PLoS ONE | www.plosone.org 1 December 2011 | Volume 6 | Issue 12 | e28466



underlying mechanisms of these effects are unclear. In plants,

several groups have demonstrated that viral suppressors of post-

transcriptional gene silencing (PTGS) interfere with miRNA-

mediated regulation of host genes [28,33,34,35,36]. In the case of

tobamoviruses, the replicase protein interferes with PTGS

[37,38,39]. Work from our laboratory indicated that co-expression

of the TMV movement and coat proteins in transgenic plants does

not suppress PTGS, yet interferes with miRNAs accumulation

[22]. Along the same line, it has been shown that Turnip mosaic virus

(TuMV) induces bra-miR1885 accumulation resulting in cleavage

of a TIR-NBS-LRR disease resistance target gene [40].

Here, we used a systemic approach by employing, both liquid

chromatography (LC) and gas chromatography (GC), coupled to

mass spectrometry (MS) to determine the relative levels of a large

set of metabolites across the viral infection process, in parallel with

an miRNA profiling using a micro-array based procedure.

Identification of metabolites and miRNAs differing in abundance

between control and infected samples may provide information

concerning the pathways involved in signaling and defense which

orchestrate and execute the response in plant–pathogen interac-

tions. A clear biphasic response in both, metabolic and miRNA

profiles was observed in accordance with the various stages of

infection. Data obtained allowed us to search for correlation

networks between both molecule types in response to the infection.

These data thus suggest that there is an early systemic signaling

stage independent of the virus’s presence and a late second phase

that correlates with virus accumulation.

Results

Experimental design
To establish differences in metabolites and miRNAs accumu-

lation occurring during plant-virus compatible infections, the

pathosystem selected in the present study consisted of N. tabacum

plants (Xhanti, nn) grown under greenhouse controlled conditions

and infected with Tobacco mosaic virus (TMV). The fifth leaf from

five-week-old plants were either TMV- or mock-inoculated. The

third leaves above from the inoculated one (leaf number eight)

were sampled at one, five, eight, 15 and 22 days post-inoculation

(dpi) (10 plant/treatment and time point) (Figure 1A). Viral

accumulation was followed by an ELISA assay detecting the TMV

coat protein (CP) in the sampled leaves (Figure 1B). Non-

detectable virus was found at either one or five dpi. At eight dpi

the percentage of plants with virus accumulation in the sampled

leaf reached 60%; however CP accumulation levels were very low

(4% of the maximum level reached at 22 dpi) at this stage. The CP

levels increased rapidly at 15 dpi (32% of the maximum level

reached at 22 dpi), reaching the maximum at 22 dpi (Figure 1B).

Symptoms were first noticed at eight dpi in only 20% of the plants

with very mild mosaic in leaves. At 22 dpi all the inoculated plants

showed characteristically severe TMV symptoms (Supplemental

Figure S1).

Viral infections produce a systemic biphasic alteration on
leaf metabolism

GC- and LC-MS analyses were both performed with the aim

of detecting a relatively comprehensive overview of metabolic

alterations following viral infection. The relative levels of 64

primary (GC-MS) and 34 secondary (LC-MS) metabolites were

analyzed in split samples obtained from the same TMV- and

mock-inoculated plants across the 22 day period (Figures 1, 2 and

3). Figure 2A (see Supplemental Figure S2A for detailed data)

shows primary metabolite changes detected in systemic leaves

from TMV- and mock-inoculated plants. The TMV panel (left

side) of Figure 2A shows the logarithmic ratio between the levels

of each metabolite in TMV- versus mock-inoculated plants at

each time point whereas the mock-inoculated panel (right side)

shows the ratio between data of each time point of mock-

inoculated plants versus the first dpi of mock-inoculated. These

two relative values indicated the metabolic alteration produced

by the virus infection at each time point (TMV panel) and the

metabolic changes produced as a consequence of the develop-

ment along the time of the experiment (mock-inoculated panel).

The virus-mediated metabolic alterations showed two temporal

phases distinct in both the trend and number of altered

metabolites (Figure 2AB, TMV panel). An early first phase (one

dpi) was mainly characterized by a rapid and significant

increment in the level of a number of metabolites whilst the

second phase, at later stages of infection (specifically at 15 and

22 dpi), revealed both increases and decreases in metabolite

Figure 1. Experimental Design. A) Schematic representation of the
experimental design. More than 100 five-week-old tobacco plants were
inoculated with TMV or with mock solution in the fifth leaf. Third upper
leaves (leaves number 8) were sampled at 1, 5, 8, 15 and 22 days post
inoculation (dpi). Each sample was ground and the powder divided in 4
parts for virus detection by ELISA, miRNA detection by microarray and
for primary and secondary metabolites detection by GC-MS and LC-MS
respectively. B) TMV infection progression along the experiment in
virus-inoculated plants. Bar graph: percentage of TMV-inoculated plants
systemically accumulating virus as detected by ELISA in the sampled
leaf along the infection. Squares line: Relative systemic accumulation of
viral CP quantified by ELISA assays for samples at each time point.
Diamonds line: percentage of TMV-inoculated plants showing charac-
teristic symptoms under naked eye inspection. n = 10 plants per each
time point.
doi:10.1371/journal.pone.0028466.g001

Metabolic and miR Profiling of TMV Infected Plants
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levels. The early phase spanned the first 24 hours of infection

when viral accumulation was undetectable in the sampled leaf

(Figures 1B and 2). By contrast, in the second phase the number

of statistically significant changes correlated with the increasing

accumulation of the virus along the infection progress (Figures 1B

and 2B).

Figure 2. Relative metabolite content of TMV infected plants detected by GC-MS. A) Heat map representing changes in relative metabolite
contents of TMV-inoculated and control plants detected by GC-MS experiments. The average accumulation of each metabolite was calculated in each
time point and treatment (n$6, per time/treatment). TMV panel shows the average metabolites level ratios calculated between TMV- and mock-
inoculated plants (TMV panel) for each time point. Mock-inoculated panel shows the relative average metabolites logarithmic ratios with respect to
1 dpi data at different time points. Asterisks indicate statistically significant differences (P,0.01) by Student’s t test. B) Number of metabolites with
significant changes along TMV infection extracted from figure 2A (TMV panel). Dpi = days post inoculation.
doi:10.1371/journal.pone.0028466.g002

Metabolic and miR Profiling of TMV Infected Plants
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In the first stage there were three groups of metabolites that are

of high interest from the host-pathogen interaction perspective:

ascorbate pathway-related metabolites, fatty acids and phenolic

compounds (Figure 2A). For the ascorbate acid pathway

dehydroascorbate, gulonate and 2-oxo-gulonate were altered (for

details see Supplemental Figure S2A). Several of the detected

altered fatty acids (palmitate, myristate, pelargonate and stearate)

are precursors of the JA biosynthetic pathway and all of them co-

ordinately increased at this first phase. Similarly, regarding

phenolic compounds, one of the salicylate precursors, benzoate,

also showed significantly increased levels both at very early (one

dpi) and later (15 and 22 dpi) stages. In addition, c-amino butyric

acid (GABA) is another stress-related molecule which was

statistically increased during this early phase. Moreover, a group

of sugars (ribose, rhamnose, and sorbose), and several organic

acids associated with the tricarboxylic acid cycle (TCA) pathway

(malate, isocitrate and pyruvate), displayed a rapid increase in

their contents. At this early time point secondary metabolites were

not significantly altered (Figure 3 TMV, left panel).

Despite the clear metabolic alterations observed in systemic

leaves after 24 hours of infection, four days later only a few

metabolites displayed significant alterations in their contents (five

dpi). Higher numbers of statistically significant changes in

metabolite levels were, however, observed at eight dpi and

especially at 15 and 22 dpi (Figure 2B). This second phase of

metabolic changes strongly correlated with the level of virus

accumulation (Figures 1B and 2B). The most altered metabolite

groups in this phase were amino acids, since more than half of

them showed significant changes at 15 and 22 dpi. However, there

were also changes in fatty acids levels which may be related to the

disruption or production of endomembrane components which is

known to occur during virus replication, movement and spread

[41,42]. In contrast to the above described metabolic changes

detected in systemic tissues following TMV infection, the heat

maps shown in Figures 2A and 3, mock-inoculated panels (right

side) dissected metabolic changes during leaf development along

the experiment. Figures 2A and 3, mock-inoculated panels

displayed metabolite levels as logarithmic ratios between one dpi

and each of the subsequent time points sampled. The TCA-related

metabolites (citrate, fumarate, isocitrate, 2-oxoglutarate and

succinate (see Supplemental Figure S2B) as well as several amino

acids such as proline, alanine, phenylalanine and valine were

strongly reduced in older leaves. Moreover, massive inductions in

secondary metabolites accumulation such as, chlorogenate and

flavonoid-related metabolites and nicotianoside related com-

pounds were registered upon aging of the leaves (Figure 3 and

Supplemental Figure S2B).

It is known that as tobacco leaves become older they increase

resistance to viral infection in comparison to younger leaves.

Chlorogenate and flavonoid compounds have previously been

reported to confer pathogen resistance [43,44], hence it is possible

that the elevated natural resistance on development is due to the

increased accumulation of those metabolites. However, neither

flavonoids nor chlorogenate compounds were induced by the

infection (Figure 3) suggesting that these metabolites do not belong

to inducible defence pathways in accordance with results reported

by Maher et al [43], similar behaviour were shown by the large

number of nicotianosides detected.

Virus accumulation correlates with amino acid depletion
in leaves

As mentioned above several amino acids showed a marked

reduction in their contents particularly at later stages of infection

(15 and 22 dpi) (Figure 2A, TMV panel). Moreover, free amino

acids residues present on the TMV CP decreased significantly in

the infected plants at later stages (Figure 4A). More precisely,

negative correlations between free amino acid contents in the

TMV-inoculated plants and the accumulation of virus CP were

found on most of the amino acids that compose CP (Figure 4A, see

R panel). Furthermore, when a second correlation was calculated

between the mentioned correlation coefficients (amount of CP and

amino acid level) and the percentages of each amino acid on the

CP composition (Figure 4A) an R = 20.82 with a p-value of 0.002

was obtained, indicating that the patterns of amino acid changes

also strongly correlated with the frequency of these amino acids in

the TMV CP composition. These results suggested that the

Figure 3. Relative metabolite content of TMV infected plants
detected by LC-MS. Heat map representing changes in relative
metabolite contents of TMV-inoculated and control plants detected by
LC-MS experiments. On the TMV panel the logarithmic ratio between
the levels of each metabolite in TMV-inoculated versus the mock-
inoculated plants for each time point are shown (similar to Figure 2). On
the mock-inoculated panel, the ratios were calculated between data of
each time point of mock-inoculated samples versus the first dpi of
mock-inoculated (similar to Figure 2). Asterisks indicate statistically
significant differences (P,0.01) by Student’s t test.
doi:10.1371/journal.pone.0028466.g003

Metabolic and miR Profiling of TMV Infected Plants
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reduction of free amino acids is a consequence of the massive CP

production.

In order to investigate whether the decrease of these amino

acids correlated with the expression of their biosynthetic pathway

genes, the steady-state mRNA levels of a chloroplast threonine

deaminase 1 precursor (TD1-chPrec), branched-chain amino-

transferase (AAtransf 3), a ketol-acid reductoisomerase (KARI),

asparagine synthase 2 (ASN2) and glycine hydroxymethyltransfer-

ase (GhMetT), were measured by RT-qPCR at 22 dpi (Figure 4B).

Those genes were selected based on Arabidopsis amino acids

pathways followed by a search for orthologous genes in tobacco

data bases to obtain the tobacco sequences. None of the genes

analysed displayed statistically significant differences in their

mRNA accumulation patterns when comparing TMV-infected

versus mock-inoculated leaves. These results suggest that the

observed reduction in free amino acids accumulation may be

mostly a consequence of an increased use of these pools of amino

acids during the massive CP production (Figure 4 A) rather than

changes in the rates of their biosynthesis.

Biphasic alteration of miRNAs levels during TMV infection
To investigate the level of miRNA changes during TMV

infection in the exact same samples for the metabolic and ELISA

studies (Figure 1A), the accumulation of several miRNAs was

measured by using a microArray containing all the known probes

for detection of plant miRNAs present in the miRbase release 9

[45]. Small RNAs were extracted from the samples taken at five,

15 and 22 dpi from the TMV- and mock-inoculated plants

(Figure 1A). The studies revealed a temporal miRNAs level

alteration after the infection unexpectedly showing two clear

distinct stages. At five dpi when no virus was detected (Figure 1B

and Supplemental Figure S3), several of the analyzed miRNAs

were down-regulated compared with mock-inoculated plants

(Figure 5 and Supplemental Figure S4) while most of the miRNAs

were up regulated at 15 and 22 dpi, as expected, when viral

accumulation was high on the sampled leaf. In particular,

miR415, mir156/7, mir390, miR398, miR168, miR167,

miR171, miR397, miR535, miR165/6 and miR160 form a

cluster (named cluster A) that was down- and up-regulated at the

early (5 dpi) and later (15 and 22 dpi) stages of infection

respectively, when compared with mock-inoculated plants. Within

this group miR165/6 and miR160 even thought behave as the

other at 5 and 15 dpi show smaller up regulation at 22 dpi. The

miRNAs miR172 and miR164, showed a similar tendency

considering 5 and 22 dpi. It is noticeably group A mentioned

miRNAs are described as responsive to different biotic and abiotic

stresses [46,47,48]. Also, these groups show a biphasic alteration

similar to that observed for the leaf metabolome after the infection.

There are another set of nine miRNAs out of twenty two that also

showed changes but without showing this biphasic trend. Finally it

worth to mention that miR403 and in stronger manner miR408

were the two unique miRNAs down regulated at late stage (22 dpi)

probably indicating a different alteration mechanism.

miRNAs and miRNA-targets accumulation during two
different tobamovirus infections at early time points

In order to provide a validation of the microArray data we

measured a set of miRNAs and also some of their mRNA target

levels on an independent experiment by means of RT-qPCR. To

pursue this analysis a new infection assay was performed on

tobacco plants using two viruses, TMV and Sunn-hemp mosaic virus

(ShMV), these two viruses differ markedly on the symptoms they

produce on tobacco; severe and mild respectively (see Supple-

mental Figure S1 for a disease severity comparison). The

inoculation and leaf sampling followed same scheme as the

previous assay (Figure 1A) but the level of inoculums was reduced

(dilution 1/10). The aim of use reduced inoculums was to produce

a longer early phase by means of slowing down the initial step of

the infection, in agreement with this idea the sampling time was

performed at 6 dpi and 11 dpi. To show this effect (extended early

phase) the level of TMV-CP of samples at 6 and 11 dpi was

analyzed and compared to 22 dpi by means of RT-qPCR assay.

Figure 4. Relative abundance of free amino acids in TMV
infected Plants. A) Changes in the relative abundance of free amino
acids between TMV-inoculated and control plants detected by GC-MS
experiments (same data as Figure 2). Pearson correlation between CP
and free amino acids levels was calculated and the correlation
coefficients R are showed on a blue-red false color scale. Asterisks
indicate statistically significant correlations (P,0.01). Amino acid
composition of CP is listed as a percentage of abundance (aa %) and
CP accumulation during virus infection is shown as line graphic. B)
Relative mRNA accumulation of genes involved in amino acids synthesis
detected by qPCR: TD1-chPrec = chloroplast threonine deaminase 1
precursor, AAAtransf3 = Branched-Chain Amino Acid Aminotransferase
3, AtKARI = similar to A. thaliana ketol-acid reductoisomerase, Asn2 = As-
paragine Synthetase 2, GHmetT = Glycine Hydroxymethyltransferase.
doi:10.1371/journal.pone.0028466.g004
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The Supplemental Figure S5 show a ratio of CP level between

infected and non infected plants for each time point; only 11 dpi

showed a statistically difference, and at this time point the TMV-

CP accumulation was less than 1% of the maximum level detected

at 22 dpi (Supplemental Figure S5) indicating that at 11 dpi the

sampled leaf is at the early stages of virus accumulation.

At 6 dpi both virus infections produced a reduction of miRNA

levels (Figure 6 A) of miRNAs belonging to Cluster A (miR 165/6,

miR167 and mir171) confirming the microarray results at early

time point. On this work we focused on miRNAs of cluster A since

those miRNAs possess established link with stress response and

were clear exponents of the biphasic alteration. Comparing both

infections, the most severe virus (TMV) seems to produce faster

effects. To determine the activity of those miRNA changes, the

levels of their targets were quantified in the same samples. Even

though quite recently Frazier et al [49] reported miRNAs

sequences, gene structure prediction and same miRNAs sequence

validation in tobacco, scarcely data about miRNA target was

available for tobacco, so it was first required to select and validate

tobacco miRNA target mRNAs. We were able to find and

validated three of target genes by RNA ligase-mediated rapid

amplification of cDNA ends (RLM-RACE) (Supplemental Figure

S6). The target genes were: a miR156-regulated Squamosa

promoter binding protein-like 2 (SPL2), a miR165/166-regulated

Homeobox gene 8 (ATHB-8) and a miR170/171-regulated

Scarecrow-like transcription factor 6 (SCL6). Interestingly, at

6 dpi ATHB-8 mRNA negatively correlated with miR166 levels in

the TMV (most severe)-infected plants but not in the mild ShMV

virus (Figure 6C).

At 11 dpi in TMV-infected plants, miR156 and miR164 were

up-regulated in a statistically significant manner (Figure 6B)

evidencing the transition from the first to the second phase, where

most of the miRNAs accumulate to higher levels (Figure 5). On the

other hand, ShMV-infected plants showed an overall reduction in

miRNAs accumulation levels, being miR165/166 and miR171 of

statistical significance. These results suggested that miRNAs and

target genes alteration might be delayed in the plants infected with

the less severe virus. At 11 dpi, ShMV and TMV-infected plants

showed a statistically significant increase of miR165/6 and

miR171 targets (Figure 6D). Furthermore, the up-regulation of

miR156 in TMV-infected plants at 11 dpi did not produce the

expected alteration on SPL2 mRNA at the same infection stage.

This latter behavior may indicate a reduction on the miRNA

activity together with its increased accumulation levels, probably

due to the virus PTGS suppressor activity.

Pre-miR166 accumulation is altered upon virus infection
In order to analyze whether the observed alteration on miRNAs

levels at early stages of infection had a transcriptional component

as observed on an earlier work at late stages of infection in

Arabidopsis [21], we decided to analyze the accumulation of

immature precursors of miRNAs (pre-miRNAs) by qPCR in the

same samples used before (Figure 6). In spite of our effort to

identify the pre-miRNAs sequence for each detected mature

miRNA using the tomato (Solanum lycopersicum) and Arabidopsis

orthologous genes sequences, we were only able to PCR-amplify

pre-miR166a. Figure 7A shows the comparisons of sequences and

the predicted structure of the tomato pre-miR166a and the

tobacco fragment isolated. At 6 dpi, only the TMV-infected plants

presented significant lower level of pre-miR166a compared to the

mock-inoculated plants (Figure 7B). However at 11 dpi both

viruses produced reductions on pre-miR166a levels (Figure 7C), in

agreement with the reduced accumulation of the mature miRNAs

observed, suggesting a possible transcriptional down-regulation

mechanism.

These data all together suggest that in the absence of detectable

virus in systemic leaves (6 dpi), miR166 and pre-miR166a

accumulation decrease and its target mRNA increase following

the infection in the TMV-infected plants (Figures 6A and C and

7B). However, at 11 dpi the amount of pre-miRNA is reduced in

plants infected with both virus (Figure 7C) showing the expected

increase of ATHB-8 target mRNA level (Figure 6D). In

conclusion, in agreement with the levels of symptoms both virus

produced on tobacco, the most severe virus (TMV) altered

miRNA accumulation and activity more rapidly than ShMV did.

A massive increase in the density of correlation networks
indicates a complex reprogramming of the regulatory
pathways triggered by viral infection

In order to assess the integrated behavior of the metabolic

network during virus infection, a combinatorial analysis of

metabolites was run by non-parametric Spearman’s rank-order

Figure 5. Temporal profiling of miRNAs accumulation follow-
ing TMV infection. Systemic, non-inoculated tobacco leaves were
sampled from virus- and mock-inoculated plants (n = 6 for each day and
treatment) at 5, 15 and 22 dpi. miRNAs accumulation in TMV-inoculated
plants were compared to those corresponding to mock-inoculated
plants and the relative accumulation was calculated as the ratio
between virus- and mock-inoculated samples at each time point. These
ratios were log2 transformed and further analyzed with hierarchical
clustering with average linkage. False-color scale indicates lower (green)
or greater (red) miRNA accumulation in TMV-infected plants respect to
mock-inoculated ones. The horizontal bar shows the log2-based scale.
See Materials and Methods for further details.
doi:10.1371/journal.pone.0028466.g005

Metabolic and miR Profiling of TMV Infected Plants
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correlation analysis, with the significance threshold set at p,0.001.

The resultant matrix revealed a dense correlation network in

infected plants comprising 249 significant connections (Figure 8A).

In contrast the same analysis in mock-inoculated samples rendered

a network of only 69 significant connections (Figure 8B). In order

to reduce the complexity of the figure, all the detected fatty acid

(fatty), all detected chlorogenate-related compounds (CGA) and all

nicotianoside related compounds (Nicotianoside) detected were

assembled in three single separated groups represented as three

single nodes.

In addition, in order to look for putative links between the

global gene expression modulators miRNAs, and metabolic

pathways networks following infection the same correlation

analyses were calculated including metabolites and miRNAs

profiles during virus infection. Correlations of miRNAs and

metabolites were calculated in the same way as described above

setting the threshold at R.0.5 and p = 0.01 due to the smaller

sample size and only metabolite-miRNA and miRNA-miRNA

correlations are shown. Once again, correlation network was

obtained from the infected plants which displayed 49 significant

connections (Figure 8C) whilst 37 significant connections were

observed in mock-inoculated samples (Figure 8D). Furthermore,

there were 31 new correlations in infected samples not present in

the mock-inoculated samples and in contrast 17 that were present

in the mock-inoculated samples were lost after infection.

Interestingly miR408 was the miRNA showing a hub behavior

with the highest number of links to metabolites. In inoculated

samples miR408 correlated with metabolites of the respiratory

pathway citrate, isocitrate, glutarate and pyruvate. In contrast,

these links were not evidenced in mock-inoculated samples.

Discussion

Plant viral infections often produce a variety of disease

symptoms, presumably by interfering with developmental process-

es, including altering cell division and/or expansion and

symmetry, and/or by causing loss of pigmentation [50]. Many

different approaches have been used to study plant-virus

interactions including microarray, small RNA deep sequencing,

infection of mutant plants, mutant viruses, virus replication/

movement and NMR-based metabolomics [2,39,51,52,53,54,55].

Here, we obtained GC/LC-MS based metabolic profiles and

miRNAs profiles during a compatible virus infection and both sets

of data were analyzed in combination. We found that TMV

infection triggers a systemic biphasic temporal regulation of

metabolism. The first phase occurs 24 hours post-inoculation and

is characterised by an increase in the levels of metabolites

occurring in the absence of detectable virus in sampled tissue

and potentially ‘‘priming the plant’’. The second phase was

characterized by both, up- and down-regulated metabolites and

the number of the changes correlated with the increment in virus

accumulation over time.

It seems reasonable to speculate that some metabolic changes

observed at the early stage are probably the sensors and later

Figure 6. TMV and SHMV infected plants miRNAs and mRNA targets accumulation levels at early time points by qPCR. Relative
accumulation of miRNAs 156, 164, 165/6, 167 and 171 (A,B), and miRNAs 156, 166, and 171 target genes (C,D) on virus-infected plants with low
inoculum. A ratio between each virus- and mock-inoculated plants is shown at 6 days post inoculation (dpi) (A,C) and 11 dpi (B,D). * means p-
value,0.1; ** means p-value,0.05 and *** means p-value,0.01.
doi:10.1371/journal.pone.0028466.g006
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propagators of the systemic signal that may orchestrate the plant

defence after pathogen attack. Within the early stage group, there

are at least four sets of molecules related with signalling that were

altered by the infection. The hormone precursors benzoic acid and

fatty acids (SA and JA respectively) were induced at 1 dpi, and it

has been well demonstrated hormones changes after virus infection

triggering stress responses [8,11,12,56,57]. GABA, a signalling

molecule in mammals, was strongly up regulated at this phase and

it has been postulated to play a similar role in plants [58].

However, it is important to note that in plants it also plays a highly

important role in energy metabolism [59]. The fourth set of

compounds were those of the ascorbate biosynthesis pathway

implying an altered redox state, a change that has also previously

been indicated to play an important role in the pathogen response

[60,61]. In agreement, altered levels of ascorbate derivatives

(transient increase) and fatty acids were previously shown following

TMV infection on tobacco plants on inoculated and systemic

leaves by using an NMR based approach [52].

Following the initial phase (one dpi), the subsequent time point

(five dpi) displayed the smallest number of statistical changes and

eight, 15 and 22 dpi time points displayed increasing number of

metabolic alterations in correlation with the level of infection. This

result suggests that changes in late stages of infection depend upon

the accumulation of virus and most likely are the consequence of

the elevated level of resources required for the production of viral

proteins [3,42]. In full agreement, the observed negative

correlation between CP levels and the levels of free amino acids

plus the correlation between this results and the frequency of each

amino acid in the CP composition (Figure 4A) strongly supports

the hypothesis that virus accumulation modulates the metabolome

to obtain resources.

Our observations of the miRNAs behavior (Figures 5 and 6)

lead us to propose that two possibly different mechanisms could be

acting at the early and late stage of infection to alter miRNAs

accumulation, representing five dpi and 15–22 dpi respectively on

the microarray data. In agreement to this hypothesis Hu et al [51]

proposed recently the existence of at least more than one

mechanism to explain the sRNAs alteration mediated by virus.

The early stage (no virus presence) shows a cluster of miRNAs with

down-accumulation and a concomitant increment in the mRNA

level of one target gene tested, and the second, later stage of

infection, includes higher levels of both miRNAs and miRNA-

Figure 7. Pre-miRNA166 is reduced after virus infection. A) Predicted fold-back secondary structures of tobacco and tomato miRNA166a
precursors as determined by the RNAfold program. Mature miRNA sequences are highlighted in green. Clustal alignment between Pre-miRNA166a
sequences from tobacco and tomato. (BC) Pre-miRNA166a qPCR quantification in plants infected with TMV or ShMV, (B) 6 dpi and (C) 11 dpi.
** means p-value,0,05 and *** means p-value,0,01.
doi:10.1371/journal.pone.0028466.g007
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targets, as previously reported [22,51,62,63], as well as viral

proteins accumulation, suggesting that viral proteins inhibit

miRNA-activity, for example, by sequestering sRNAs through

the PTGS suppression activity of the replicase [37,38,39].

The early stage may include a transcriptional component, as

implied by the coordinated reduction of the pre-miR166 and

mature miR166 levels (Figure 7) also previously demonstrated by

our group for the miR164a precursor on Arabidopsis thaliana [21].

The correlation analyses revealed a dense correlation network

(metabolites and miRNAs) (Figure 8AC) in infected plants

compared to the mock-inoculated ones (Figure 8BD). This

information may indicate that the virus infection invokes the

operation of, or increased flux through, a set of metabolic

pathways that are highly interconnected. Consequently, it can be

postulated that the infection modifies metabolite levels by means of

key players which coordinate, or modulate, the levels of these

components, for example miRNAs. Moreover, a few correlation

modules were constant irrespective of the degree of infection. For

example a secondary metabolism module, represented by

nicotianoside and chlorogenic acid derivatives and flavonoids

(Quercetin, Rutin and Kaempferol), was maintained across the

experimental conditions described here (Figure 2A and 8AB),

suggesting that the levels of these metabolites are either unaffected

by viral infection or are modified in concert. However,

comparison of the relative levels of the metabolites in question

reveals that the first hypothesis is in fact correct. This is in close

agreement with a previous proposal that these defense compounds

are part of the autonomous defense mechanism [43].

Correlation analysis among miRNAs and metabolites revealed

similar results. In particular, two correlation groups were observed

in infected and mock-inoculated plants (Figure 8 CD). One

constituted only by miRNAs and the second one involving both

miRNA and metabolites. Interestingly, miR168, which regulates

Ago1 (involved in the miRNA function process) [64,65], in the

mock-inoculated samples displayed several connections with the

rest of the miRNA core. However, in the infected plant, miR168

only correlated with miRs 156/7 and 390, most probably as a

consequence of the viral infection altering specific miRNA levels/

activity. MiRNAs 397, 398 and 408 respond to nutrient

deprivation, most particularly under copper and phosphate

limitation [66]. miR408 (that together with miR403 are the only

two down-accumulated miRNAs at late stage) can be considered a

hub of our network analysis and, in infected leaves, it is linked to

the TCA cycle intermediates citrate, isocitrate, glutarate and

pyruvate. This latter association may imply a connection to the

cellular respiration process through one of the miR408 targets (a

plantacyanin-like protein (AT2G02850) that belongs to the

phytocyanin family of secreted blue copper proteins) and/or

reflex the copper homeostasis alteration on the miR398 regulating

their target gene the COX5b protein, which is part of the

respiratory chain complex III [47,67]. Further experiments are

required to establish this connection.

The basal defenses and the systemic signaling of viral associated

molecular patterns (VAMPs) triggering innate immunity may be

playing a role in the initiation of this early phase of miRNA

alteration. In turn, this early phase may be orchestrating the

antiviral defense in agreement to the suggestion of Ruiz-Ferrer and

Voinnet [27]. Moreover, there are previous studies showing links

between miRNA and hormones crostalk [12,21,56,68] therefore

allowing us to propose that changes in the mentioned metabolites

(JA and SA precursors) that are infection-specific hubs on the

response network (Figure 8 and 2A) may directly or indirectly

trigger the alteration in systemic miRNA accumulation observed

in the absence of virus (Figure 5, 5 dpi). In agreement with the

proposal that the early phase should be mostly transcriptional,

previous work of our and other laboratories detected elements

responsive to SA and/or JA in several promoters of the miRNAs

that compose the cluster altered at the beginning of the infection

stage [21,46]. It is important to mention that the miRNAs that

form cluster A are part of a miRNAs group described as stress

regulated miRNAs, responsive to several different kind of stresses

[46,47,48,69,70]. The fact that ShMV (mild virus) produces the

early miRNA alteration at a delayed stage in some of the five

tested miRNAs in comparison to TMV (severe virus) (Figure 6)

and the fact that ShMV produces light symptoms may indicate

that this early alteration is important to either the severity itself or

to the timing required for symptom development.

In conclusion we have showed a global and more importantly

bi-phased series of changes in metabolites and several miRNAs

produced following TMV infection, in systemic leaves. Several of

the metabolites increased at this first stage were related to

hormone production and some of them could be proposed to

propagate the phloem signal within the systemic leaf cells. In the

case of miRNA the early phase, without virus accumulation, may

respond to a systemic signal that probably acts transcriptionally on

miRNA genes to produce the mature miRNAs alteration.

However, further experiments are required in order to uncover

which metabolites/miRNAs play causal biological roles during the

virus infection. As a consequence, further knowledge of the role of

miRNA in regulating metabolic pathways and/or vice versa will

likely be a great aid in understanding the role of miRNAs during

host-pathogen interactions.

Materials and Methods

Plants growing conditions, viral infections and
quantification

All N. tabacum plants (Xhanti nn) were grown in a greenhouse

with temperatures ranging from 20 to 26uC. A single expanded

leaf of each plant (leaf 4 to 6 stage) was dusted with carborundum,

20 ml of semi-purified TMV virus in 20 mM NaHPO4 (pH 7) was

added, and the surface of the leaf was gently abraded. Two level of

inoculums were used, the experiment mentioned in figure 1, 2, 3,

4, 5 and 8 used more than 200 Local Lesion (LL) inoculums, the

experiment of figure 6 and 7 used approximately 20 LL inoculums

for both viruses TMV and ShMV. The third leaf above the

inoculated one was collected (leaf number eight) (Figure 1). For

quantification of viral proteins, total proteins were extracted and

quantified using Quick Start Bradford Protein Assay (Bio-Rad).

For viral detection ELISA experiments were performed as

described previously [71].

Metabolic analysis
Metabolite extractions were done as previously described [72].

For GC-MS, derivatization and GC-time of flight-MS (GC-TOF-

MS) analyses were carried out as described previously [73]. The

Figure 8. Non-parametric Spearman’s correlation analysis. Metabolites-metabolite (AB) or miRNA-metabolites level (CD) correlation was
calculated between inoculated plants (AC) or mock-inoculated plants (BD). Significant correlation (p = 0.001, for AB and p = 0.01 for CD; R.0.5)
between two metabolites was drawn with color lines. Positive correlations were drawn with red lines, negative with blue lines. Correlations present in
both TMV inoculated (AC) and mock-inoculated plants (BD) were drawn in black, regardless the sense of the correlation.
doi:10.1371/journal.pone.0028466.g008
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GC-TOF-MS system was composed of a CTC CombiPAL

autosampler, an Agilent 6890N GC and a LECO Pegasus III

time-of-flight mass spectrometer running in EI+mode. Metabolites

were identified by comparison to database entries of authentic

standards and relative quantification was performed as described

in [74].

For secondary metabolites extraction for the LC-MS injection

were done as follows: 50 mg of frozen plant tissues were

homogenized in 10 mL of extraction solvent (80% methanol with

10 mg/ml of isovitexin, EXTRASYNTHASE, Genay Cedex,

France) per mg of fresh weight of tissue in a mixer mill MM300

(Retsch, Haan, Germany) for 3 min at 30 Hz. After centrifuga-

tion, 400 ml were transferred to new tube for evaporation. Dried

pellets were resolved by 400 ml of 80% Methanol. After filtration

by centrifugal device NanoSep MF GHP 45 mm filter (PALL, NY,

USA) with centrifugation at 3,000 g. The filtrates were immedi-

ately used for injection. HPLC-MS analysis was performed on

HPLC system Surveyor (Thermo Finnigan, USA) coupled to

Finnigan LCQ-Deca system (Thermo Finnigan, USA). Five ml of

the plant extract was injected onto the column (Luna 3 m C18(2),

100A, Phenomenex, Torrance, CA, USA) with elution buffer A

(water with 0.1% of formic acid) and buffer B (acetonitrile with

0.1% formic acid). Flow rate was 0.2 ml/min. Separation

conditions were as follows: 0–2 min, isocratic elution with 100%

A; 2–4 min, linear gradient from 0% to 15% B; 4–14 min, linear

gradient from 15% to 32% B; 14–19 min, linear gradient from

32% to 50% B; 19–21 min, isocratic elution with 100% B. The

mass analyzer was used for the detection in a negative/positive ion

scanning mode with the following setting: capillary temperature,

350uC; source voltage, 5.00 kV and capillary voltage, 60.0 V in

positive ion detection and 210.0 V in negative ion detection. Peak

areas were integrated using Xcalibur software 2.1 (Thermo

Finnigan, USA). Rutin and chlorogenic acid were used for the

identification of the peaks in the plant extracts based on co-elution

profile for retention times and mass fragmentation by tandem MS

analysis. Other peaks which are not available of standard

compounds were annotated by comparing their m/z values and

MS2 fragmentation patterns with reference compounds, the

reported data [75,76,77] and metabolite databases [78,79].

Tagfinder software for GC-MS results and Xcalibur software

for LC-MS was used to assign the peaks identity [80]. Metabolites

abundance was calculated based in the Ribitol or Isoxitexin

intensity and tissue weight. Averages, standard errors and

Student’s t-tests calculated. VANTED software was used to show

and analyze metabolites abundance and statistical changes in a

network, manually draw based on published databases and papers

[81].

Correlation analysis
Non-parametric Spearman correlation analyses were calculated

using Infostat software (InfoStat software [InfoStat version 2008.

Grupo InfoStat, FCA, Universidad Nacional de Córdoba,

Argentina]), filtered at p = 0.001 for metabolites and p = 0.01 for

miRNA data. Significant correlations were drawn using netdraw

(http://www.analytictech.com/).

RNA extraction and quantitative real-time polymerase
chain reaction

For relative quantification of miRNAs and target mRNAs

accumulation levels, experiments were carried out using five

biological replicates. The RT-qPCR performed complies with the

MIQE requirements, for the detailed data on each experiment see

Supplemental Figure S7. Total RNA was isolated from leaves

using TRIZOLH Reagent (Invitrogen), quantified using spectro-

photometer (NanoDropTechnologies), and treated with DNase I

(Invitrogen). First-strand cDNA was synthesized either using

Superscript III (Invitrogen) and stem-loop specific primers (for

miRNAs accumulation analysis) or MMLVI and oligo d(T)20

primers (for targets mRNA accumulation analysis). Real-time

qPCR to detect miRNAs was performed as described by Chen

et al [82]. The oligonucleotide primer sets for mRNA quantifi-

cation were designed using Primer Express 2.0 software (Applied

Biosystems) to amplify a fragment containing the miRNA target

recognition site. All qPCR reactions were performed using

PlatinumH Taq DNA Polymerase (Invitrogen) and SYBRHGreen

stain (Roche). qPCR data analysis and primer efficiencies were

obtained using LinRegPCR Software [83]. To select the reference

genes a stability test was performed using GeNorm, NormFinder

and Bestkeeper algorithms on three candidate genes (Supplemen-

tal Figure S8). The candidates genes were Tabacco elongation

factor-1a (EF-1a, SGN-U446573), tobacco Actin gene (SGN-

U431117) and Ubiquitin 3 gene (Ubi-3, GB: X58253). Based on

the result observed EF-1a was selected and used as internal control

given that it was the most consistent along the three algorithms

used and it was in agreement to the reference genes proposed by

Lilly et at [84] for virus infections even thought the three selected

genes show similar stability. Relative expression ratios and

statistical analysis were performed by using FgStatistics interface

(Di Rienzo J.A, (2009). Statistical software for the analysis of

experiments of functional genomics. http://sites.google.com/site/

fgStatistics/). This software makes use of Pfaffl algorithm [85] to

calculate the expression ratio of a given gene in a improved

multivariate user friendly interface and calculate the statistic

significance using a permutation test (See Supplemental Figure

S7). The cut-off for statistically significant differences was set as

* means p-value,0.1; ** means p-value,0.05 and *** means p-

value,0.01. All primer sets are listed in Supplemental Figure S9

[85].

sRNAs extraction and MicroArray Assay
High-quality sRNAs were extracted from tobacco leaves using

miRNAVana kit (Ambion, USA) following manufacturer’s indi-

cations and then quantified using a spectrophotometer (Nano-

DropTechnologies). Combimatrix CustomArrayTM 4X2K

miRNA array was used, each slide has four identical array sectors

that can be hybridized with different microRNA samples

simultaneously, each array sector carry anti-sense oligonucleotide

probes with a median length of 22 nucleotides and an average Tm

of 55 to 60uC. The 2000 probes on each array/sector contain the

complete set of plants mature miRNAs available on MirBase 9.0 in

triplicates along the array (Arabidosis thaliana miRNAs probes are

repeated four times). The negative controls for RNA degradation

and positive controls (U6 and tRNAs) were used to accept array

data. Preparation and labeling of miRNA samples for hybridiza-

tion were performed following manufacturer’s protocols (Combi-

matrix). Images were collected and digitalized using a laser

scanner (arrayWoRxe Standard Biochip Reader; Applied Preci-

sion, WA, USA). The Microarray Imager software from

Combimatrix was used in order to extract raw data from images.

A total of n = 6 plants were separately tested for each time point (5,

15 and 22 dpi) of each treatment (mock- and virus-inoculation).

Samples were randomly assigned in blocks from the same dpi

(mock/virus inoculations) into the three chips used (each with four

independent chambers or arrays), which were subsequently

stripped and reused twice following manufacturer’s protocol.

Therefore a total of 36 arrays, each one belonging to one

biological replicate were performed. Raw fluorescence values were

normalized (As suggested by Combimatrix), background-sub-
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stracted and a mean value from technical replicates for each

miRNA sub-type for each species-specific probe (e.g., ath|-

miR156a) for every array was calculated. Afterwards a median

value was obtained for every single miRNA type and species-

specific probe (e.g., ath|miR156) at 5, 15 and 22 days post-

inoculation (dpi) for all arrays and each treatment. Median values

were only taken into account in the case of the existence of at least

three independent arrays showing mean values above the

background for each miRNA and probe. Later a log-2 quotient

between infected and mock-inoculated was calculated for each

miRNA type and species-specific probe fluorescence value. A

median value was then calculated in order to obtain a single value

for each miRNA for all probes spotted in the arrays. MiRNAs

belonging to closely related families with similar mature sequences

were put together for the calculations. The results were visualized

as a log-2 false-color scale (MultiExperiment Viewer Version 4.2

August 1st, 2008) [86].

Supporting Information

Figure S1 Virus severity comparison. Systemic symptoms

on infected tobacco plants at 30 days post infection (TMV, and

ShMV respectively). Percentage of plants showing systemic

symptoms observed on inoculated plants with the selected viruses

in two independent experiments at different days post infection,

with a minimum of ten plants per assay. Similar virus

concentrations were used (,2.5 mg/ml) as inocula. Number of

plants with flowers and the average height of plants quantified 30

days post infection in two independent infection assays.

(XLS)

Figure S2 Excel table showing the data used to build
Figure 2 and 3. A) Metabolite changes detected in systemic

leaves from TMV and Mock-inoculated plants, data is presented

normalized for each time point and as a ratio between the levels of

each metabolite in infected versus the mock-inoculated plants in

each time point, this ratios indicate the metabolic alteration

produced by the virus infection at each time point. B) Metabolite

changes detected in Mock-Inoculated plants along the time course

of the experiment, data is showed as the ratio between data of each

time point of mock-inoculated samples versus the first dpi of mock-

inoculated. This ratio indicates the metabolic changes produced as

a consequence of the sampled leaf development along the time of

the experiment. In addition in both A and B tables information

about the peak assignment is display.

(XLS)

Figure S3 CP-TMV detection by RT-PCR analysis in 5
and 22 dpi TMV and mock infected tobacco plants. It is

observed that at 5 dpi there is no detectable virus in sampled

tissue. For RT-PCR, first-strand cDNA was synthesized using M-

MLV RT (Promega) and random primers according to manufac-

turer’s instructions (Promega). The oligonucleotide primer set used

for CP detection were designed using Vector NTI Software. The

PCR was performed using Taq (Invitrogen) under the following

program: 16 5 min 95uC, 306 15 sec 95uC, 30 sec 58uC, 30 sec

72uC. The product were analized in 1.2% Agarose gel.

(TIF)

Figure S4 Excel table showing the data used to build
Figure 5. A) Fluorescence values extracted from microarray

hybridizations using sRNA obtained fractions from systemic leaves

of infected (TMV) or buffer-inoculated (MOCK) N. tabacum plants.

Raw fluorescence values were normalized, background-sub-

stracted and a mean value from technical replicates for each

miRNA sub-type for each species-specific probe (e.g., ath|

miR156a) for every array was calculated. Afterwards a median

value was obtained for every single miRNA type and species-

specific probe (e.g., ath|miR156) at 5, 15 and 22 days post-

inoculation (dpi) for all arrays and each treatment. Median values

were only taken into account in the case of the existence of at least

three independent arrays showing mean values above the

background for each miRNA and probe. The ‘‘no data’’

annotation indicates lack of sufficient mean values. B) Using the

data presented in A a median value was then calculated in order to

obtain a single value for each miRNA for all probes spotted in the

arrays. MiRNAs belonging to closely related families with similar

mature sequences were put together for the calculations. There

after a log-2 quotient between infected and mock-inoculated was

calculated for each miRNA.

(TIF)

Figure S5 TMV-CP cuantitative detection by RT-qPCR
relative quantification analysis at 6, 11 and 22 dpi TMV
and mock infected tobacco plants. Ratios were obtained

between mock and TMV infected plants from each day post

infection. It is observed that at 11 dpi low but significative

amounts of CP is detected and at 22 dpi a severe infection shows

high amounts of TMV CP. *** indicates p-value,0.001.

(TIF)

Figure S6 miRNA Targets genes validation. (A–B) Align-

ments of the miRNA-target sites between tobacco genes: SGN-

U435399, SGN-U439906, and SGN-U428805 mRNAs and

reported Arabidopsis miRNA-target genes. (C) miR156, miR166

and miR171 cleavage sites in target genes SGN-U435399, SGN-

U439906, and SGN-U428805 mRNAs, respectively, determined

by a modified RNA ligase-mediated RACE. The frequency of

RACE clones corresponding to each cleavage site (arrows) is

shown with the number of clones matching the target message.

Aligned are the reported Arabidopsis target sites. Methods: To

map the internal cleavage site in putative targets of tobacco

mRNA, RNA ligase-mediated rapid amplification of cDNA ends

(RLM-RACE) was done using the GeneRacer Kit (Invitrogen,

Carlsbad, CA). A modified procedure for RLM-RACE was

carried out as described previously by Llave et al. (Llave C, Xie Z,

Kasschau KD, Carrington JC (2002) Science 297:2053–

20562002). Total RNA was isolated from 4-week old plants and

Poly(A)+ mRNA was purified using an Oligotex mRNA Midi Kit

(Qiagen, Germany). Two nested PCRs were done to amplify the

DNA fragment, which was subsequently cloned into pGEM-T

Easy vector (Promega, Madison, WI) for sequencing.

(TIF)

Figure S7 Experimental conditions used in Quantitative
Real Time PCR Experiments based on MIQE require-
ments.

(TIF)

Figure S8 Stability analysis of candidate reference
genes in 6 and 11 dpi, TMV, SHMV and mock infected
tobacco leaves. The housekeeping genes were ranked according

to their expression stability by (A) geNorm, (B) Normfinder and (C)

BestKeeper statistical tools. In the three plots, genes were ordered

from least (left) to most (right) stable. (C, bottom) Pair-wise

correlation analysis between the candidate reference genes and the

calculated BestKeeper index were highlighted in grey. (D) Ct

values of the three houskeeping genes EF-1a, Ubi-3 and Actin,

obtained by RT-qPCR and LinReg data analysis. Ct values

resulting from RT-qPCR and LinReg software were used for

expression stability analysis using the Microsoft Excel based tools

geNorm 3.5 (Vandesompele et al 2002), Normfinder 0.953
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(Andersen et al 2004) and Bestkeeper v1 (Pfaffl et al, 2004)

according to the developer’s instructions. Vandesompele J, De

Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman

F: Accurate normalization of real-time quantitative RT-PCR data

by geometric averaging of multiple internal control genes.

Genome Biol 2002, 3(7):RESEARCH0034 Andersen CL, Jensen

JL, Orntoft TF: Normalization of real-time quantitative reverse

transcription-PCR data: a model-based variance estimation

approach to identify genes suited for normalization, applied to

bladder and colon cancer data sets. Cancer Res 2004, 64:5245–

5250. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP:

Determination of stable housekeeping genes, differentially regu-

lated target genes and sample integrity: BestKeeper–Excel-based

tool using pair-wise correlations. Biotechnol Lett 2004, 26:509–

515.

(DOC)

Figure S9 List of used primers.
(DOC)
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