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Abstract 31 

Maize (Zea mays ssp. mays L.) landraces are traditional American crops with high 32 

genetic variability that conform a source of original alleles for conventional maize 33 

breeding. Northern Argentina, one the southernmost regions of traditional maize 34 

cultivation in the Americas, harbours around 57 races traditionally grown in two 35 

regions with contrasting environmental conditions, namely the Andean mountains 36 

in the Northwest and the tropical grasslands and Atlantic Forest in the Northeast. 37 

These races encounter diverse threats to their genetic diversity and persistence in 38 

their regions of origin, with climate change standing out as one of the major 39 

challenges. In this work, we use genome-wide SNPs derived from ddRADseq to 40 

study the genetic diversity of individuals representing the five groups previously 41 

described for this area. This allowed us to distinguish two clearly differentiated gene 42 

pools, the Highland Northwestern maize (HNWA) and the Floury Northeastern 43 

maize (FNEA). Subsequently, we employed Essential Biodiversity Variables at the 44 

genetic level, as proposed by the Group on Earth Observations Biodiversity 45 

Observation Network (GEO BON), to evaluate the conservation status of these two 46 

groups.  This assessment encompassed genetic diversity (Pi), inbreeding 47 

coefficient (F), and effective population size (Ne). FNEA showed low Ne values and 48 

high F values, while HNWA showed low Ne values and low Pi values, indicating that 49 

further genetic erosion is imminent for these landraces. Outlier detection methods 50 

allowed identification of putative adaptive genomic regions, consistent with 51 

previously reported flowering-time loci and chromosomal regions displaying 52 

introgression from the teosinte Zea mays ssp. mexicana. Finally, species 53 

distribution models were obtained for two future climate scenarios, showing a 54 

notable reduction in the potential planting area of HNWA and a shift in the 55 

cultivation areas of FNEA. Taken together, these results suggest that maize 56 

landraces from Northern Argentina may not be able to cope with climate change. 57 

Therefore, active conservation policies are advisable. 58 
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Introduction 62 

Maize landraces are varieties that have been grown by local communities 63 

throughout the Americas since pre-Columbian times (Gupta et al., 2020). They 64 

differ from commercial hybrids in that they are open-pollinated, and cultivated 65 

through traditional methods (Mercer et al., 2008; Casañas et al., 2017; Gupta et al., 66 

2020). The cultivation characteristics of these varieties include cross-pollination 67 

between fields, seed exchange by farmers, and selection by both agricultural 68 

management and environmental conditions (Mercer et al., 2008; Casañas et al., 69 

2017). Due to this, landraces often have high genetic variability and constitute a 70 

valuable source of original alleles for breeding. On the other hand, commercial 71 

hybrids capture only a small fraction of this variation, because of the use of a limited 72 

set of landraces in breeding programs (Hufford et al., 2012; Smith et al., 2017). 73 

Moreover, the replacement of landraces with more productive, but genetically 74 

uniform, commercial germplasm has led to significant genetic erosion (Dwivedi et 75 

al., 2016, Heck et al., 2020, Gupta et al., 2020). Therefore, active landrace 76 

conservation actions are essential to preserve the genetic and phenotypic 77 

variability of this crop. 78 

The Group on Earth Observations Biodiversity Observation Network (GEO BON; 79 

https://geobon.org/) has defined the Essential Biodiversity Variables (EBVs) as a set 80 

of variables of different origin that serve to capture critical scales and dimensions 81 

related to biodiversity, including how biodiversity is geographically distributed and 82 

how it varies over time (Pereira et al., 2013; Brummitt et al., 2017; Navarro et al., 83 

2017; Schmeller et al., 2017; Hoban et al., 2022). At the genetic level, Hoban et al. 84 

(2022) proposed to evaluate four EBVs: genetic diversity, genetic differentiation, 85 

inbreeding and effective population size, which provide information on genetic 86 

variation at different levels (within populations, between populations, within 87 

individuals, and change in genetic diversity due to drift, respectively) using a single 88 

genomic data set. EBVs encompass metrics that can be used to forecast the status 89 

and trends of genetic diversity, which is the cornerstone of species resilience, and 90 

essential to their ability to adapt to environmental conditions (Hoban et al., 2022). 91 

Although the concept of EBV is usually applied to natural populations or invasive 92 
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species (Hoban et al., 2022), these metrics could also be applied to domesticated 93 

species such as maize given that EBVs respond to both natural and anthropogenic 94 

drivers. 95 

Climate change is currently one of the main threats to crop species diversity, 96 

making germplasm conservation one of the most pressing present-day challenges 97 

(Gupta et al., 2020). Commercial maize production is estimated to fall by 50% with 98 

a 4ºC temperature increase and by 10% with a 2ºC temperature increase in major 99 

maize producing countries (Tigchelaar et al., 2018). Landraces are characterised by 100 

being locally adapted, i.e., by presenting greater fitness in their native habitats than 101 

in other environments (Savolainen et al., 2013). Under a climate change scenario, 102 

the only possibilities for landraces to survive in their original locations are either by 103 

evolving via selection upon standing variation or through plasticity (Cang et al., 104 

2016). However, Cang et al. (2016) estimated that the speed of climate change is 105 

5,000 times faster than the adaptive capacity of 230 species of the Gramineae 106 

family. This suggests that rapid adaptation to changing conditions in local 107 

environments is not likely to happen, implying that climate change may significantly 108 

affect maize landraces too. Understanding how local germplasm has adapted to its 109 

surroundings can help lessen the potential of diversity reductions. Thus, in addition 110 

to EBVs, focusing on adaptive variation adds a significant aspect to conservation 111 

considerations since identifying genes under selection may help quantify the extent 112 

of local adaptation and provide information on the molecular processes behind 113 

phenotypic divergence. 114 

Northern Argentina is one of the southernmost regions of maize landrace cultivation 115 

in South America and it has been proposed as an ancient contact zone between 116 

Andean and Tropical lowland germplasm (Vigoroux et al., 2008; Tenaillon and 117 

Charcosset, 2011). This area harbours ca. 57 maize landraces and encompasses 118 

two clearly differentiated agroecosystems: the Northwest, and the Northeast 119 

(Bracco et al., 2012; Melchiorre et al., 2017; Realini et al., 2018). In Northwestern 120 

Argentina (NWA), maize cultivation extends to an altitude of ca. 4,000 meters above 121 

sea level (m.a.s.l.), daily temperature ranges are large, precipitations are below 350 122 

mm/year, oxygen pressure is low, soil nutrients are scarce and radiation indices are 123 
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high (Rivas et al., 2022). By contrast, altitude in Northeastern Argentina (NEA) does 124 

not exceed 800 m.a.s.l. while climate is subtropical, with average annual 125 

temperature between 15 and 23 °C and annual precipitation between 1,000 and 126 

2,000 mm. Soils in NEA are clayish with limiting components (nitrogen, phosphorus, 127 

organic matter), low pH and low to medium fertility (Heck et al., 2020). 128 

Bracco et al. (2016) found significant molecular differentiation between NWA and 129 

NEA landraces, and identified three genetic groups: NWA maize, Floury 130 

Northeastern maize (FNEA) and Northeastern Popcorns (PNEA). More recently, 131 

microsatellite analysis of NWA landraces revealed that there is an altitude-132 

associated genetic structure, with two main genetic pools: Highland Northwestern 133 

maize or HNWA, cultivated at more than 2,000 m.a.s.l., and Lowland Northwestern 134 

maize or LNWA, cultivated below 2,000 m.a.s.l. (Rivas et al., 2022). Additionally, a 135 

third NWA group, the Northwestern Popcorns (PNWA), was recognized by Lia et al. 136 

(2009). Previous studies showed that HNWA are associated with Andean landraces 137 

and that FNEA represents a unique, locally adapted gene pool, with no clear 138 

connections to any other lowland maize from South America (Lia et al., 2009; 139 

Bracco et al., 2016; Lopez et al., 2021). Similarly, the origins and affiliations of LNWA 140 

remain unknown. Overall, the complex structuring of genetic diversity suggests that 141 

further efforts are still needed to delineate significant units and effectively assist 142 

conservation. 143 

In this work, we use genome-wide molecular markers derived from ddRADseq and 144 

the genetic EBVs proposed by Hoban et al. (2022) to assess the conservation status 145 

of maize landraces from NWA and NEA. In addition, to test for evidence of adaptive 146 

divergence we searched for selection signals. Finally, we used two future climate 147 

scenarios to perform Bayesian modelling of species distribution. The results of this 148 

work suggest that the long-term diversity of maize landraces of Northern Argentina 149 

is compromised, and that more active conservation policies are advisable. 150 

 151 

Materials and methods 152 

Plant Material 153 
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A set of 87 maize individuals representative of the genetic and morphological 154 

groups previously identified for the Northeast and Northwest of Argentina were 155 

obtained from the “Banco Activo de Germoplasma INTA Pergamino” (BAP; INTA, 156 

Pergamino, Buenos Aires, Argentina) and from the “N.I. Vavilov” Plant Genetic 157 

Resource Laboratory, Faculty of Agronomy, University of Buenos Aires. General 158 

characteristics of the accessions, including ID, racial classification, and collection 159 

site, are given in Figure 1A and Supplementary Table 1. A priori group assignment is 160 

based on the analysis of microsatellite data according to Lia et al. (2009), Bracco et 161 

al. (2016), López et al. (2021), and Rivas et al. (2022) (Supplementary Table 1). The 162 

map was made with QGIS v3.16.16-Hannover (https://qgis.org/en/site/), employing 163 

a 1:50m political map from Natural Earth (https://www.naturalearthdata.com/) and 164 

a 5-minute latitude/longitude grid digital elevation model from the European 165 

Environment Agency (https://data.europa.eu/data/datasets/data_world-digital-166 

elevation-model-etopo5?locale=es). 167 

DNA Extraction 168 

Plants were germinated in a greenhouse under controlled conditions (80% relative 169 

humidity; 200 mmol PAR s-1m-2; 16 h of light/8 h of darkness). DNA was extracted 170 

with the protocol by Dellaporta et al. (1983) from 100 mg of fresh leaves. The quality 171 

of the DNA was checked using a NanoDrop1000 (DNA quality criterion by 172 

absorbance: A260/A280 > 1.8 and A260/A230 ≈ 1.8-2.2) and through runs on 0.8% 173 

agarose gels. DNA was quantified using a Qubit 2.0 fluorometer (Thermo Fisher 174 

Scientific). 175 

DNA Sequencing 176 

The preparation of the genomic libraries was carried out using the protocol 177 

developed by Aguirre et al. (2019). Briefly, DNA samples were digested with two 178 

digestion enzymes, one of rare cleavage and one of frequent cleavage (SphI + MboI). 179 

Adapters (4-9 bp) published by Peterson et al. (2014) were ligated to the digested 180 

fragments. The reactions were incubated for one hour at 23 ºC, followed by an 181 

additional one-hour incubation at 20 ºC. Ligations from all samples were mixed in 182 

equal DNA amounts in pools of 22-24 individuals, concentrated, and finally purified 183 
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with 1X Ampure XP beads per group. Next, an automated size selection (one for 184 

each pool) was performed on a 2% agarose cassette in SAGE ELF (Sage Science, 185 

Inc., Beverly, MA, USA). 450-bp fragments were retained and subsequently purified 186 

with 0.8X AMPure beads (Beckman Coulter, Indianapolis, USA). Finally, PCRs were 187 

carried out for each of the pools employing dual-indexed primers (Lange et al., 188 

2014). The four pools were put together. Low-depth sequencing was performed on 189 

a MySeq Illumina (Albany, USA) equipment in the Genomics Unit of the IABIMO 190 

(Hurlingham, Buenos Aires, Argentina) to verify the correct assembly of the library. 191 

The samples were sent to the International Maize and Wheat Improvement Center 192 

(CYMMIT, El Batán, Texcoco, Mexico), where they were sequenced on an Illumina 193 

Novaseq (Albany, USA) device with paired-end readings (2x150 bp).  194 

ddRADseq bioinformatics analysis 195 

Raw reads were curated for quality in Stacks v1.42 (Catchen et al., 2013). Barcodes 196 

were removed and reads were trimmed to 150 bp. SNP calling was also performed 197 

with Stacks v1.42. The parameters used were: -m 3 (minimum depth of coverage), -198 

M 2 (distance allowed between stacks), -n 3 (distance allowed between catalog 199 

loci). Reads of each sample were mapped against the V4 version of maize B73 200 

reference genome (https://www.maizegdb.org/genome/assembly/Zm-B73-201 

REFERENCE-GRAMENE-4.0) with Bowtie 2 (Langmead et al., 2012). The resulting vcf 202 

file was filtered with VCFtools (Danecek et al., 2011). Only sites fulfilling the 203 

following requirements were retained:  a maximum proportion of missing data of 204 

35% (--max-missing 0.65); a minimum number of times that an allele appears over 205 

all individuals at a given site equal to 4 (--mac 4); a mean depth value greater than 206 

or equal to 8 per individual (--minDP 8); a minimum distance between sites equal to 207 

200 bp (--thin200). The unfiltered and filtered vcf files are provided in 208 

Supplementary tables 2 and 3, respectively. The imputation of the filtered vcf file 209 

was carried out with Beagle (Browning et al., 2018). The filtered imputed vcf file is 210 

found in Supplementary table 4. The genomic variant annotation was performed 211 

with SnpEff (Cingolani et al., 2012). The filtered, annotated, and imputed vcf file is 212 

found in Supplementary table 5. This vcf file was used for all subsequent analyses. 213 
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The graph of the SNP density was plotted with the CMplot package (Yin et al., 2021) 214 

in R (https://www.r-project.org/). 215 

Population structure analyses 216 

A neighbor joining (NJ) phylogenetic tree based on Euclidean distances was built 217 

with Tassel (Bradbury et al., 2007) and graphed with Itol (https://itol.embl.de/). The 218 

principal component analysis (PCA) was performed with the Adegenet package 219 

version 2.1.10 in R (Jombart et al., 2008). The discriminant analysis of principal 220 

components (DAPC) was performed using the Adegenet package in R (Jombart et 221 

al., 2008). The “find.clusters” function was used to find the optimal number of 222 

clusters (k) to describe the data employing the BIC values criteria. The DAPC itself 223 

was implemented with the “xvalDapc” function using the previously inferred k 224 

groups and cross-validation to define the number of PCs. A Bayesian analysis of 225 

population structure was performed with the STRUCTURE software employing the 226 

admixture model with correlated allele frequencies (Pritchard et al., 2000). Between 227 

2 and 6 clusters (Ks) were evaluated running 3 times each K (burn-in: 50,000; 228 

iterations: 100,000). The deltaK method (Evanno et al., 2005) was used to determine 229 

the most probable K through the Structure Harvester program (Earl et al., 2012). The 230 

allele frequency divergence estimate given by the software was used to measure 231 

the differentiation between STRUCTURE groups. 232 

Characterisation of potential conservation units 233 

Based on the findings of the various population structure analyses, two groups, 234 

HNWA and FNEA, were chosen for further investigation using EBVs, genome scans 235 

of selection, and habitat distribution modelling. Only those individuals that were 236 

unequivocally assigned to each genetic cluster by the STRUCTURE and DAPC 237 

methods were considered for further analyses (membership coefficients or 238 

assignment probabilities > 0.75, respectively) (Supplementary Table 1). 239 

Linkage disequilibrium 240 

Linkage disequilibrium was calculated as the squared allele frequency correlation 241 

(r2) employing the --geno-r2 option of VCFtools (Danecek et al., 2011). The expected 242 

decay of linkage disequilibrium (r2) with physical distance was modelled for each 243 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578655doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578655
http://creativecommons.org/licenses/by/4.0/


9 
 

chromosome using Hill and Weir’s equation (1988) on the basis of the script 244 

developed by Marroni et al. (2011). 245 

Estimation of EBVs 246 

Nucleotide diversity (Pi) per site, inbreeding coefficient (F), Hardy-Weinberg 247 

equilibrium and fixation index per site (Fst, Weir and Cockerham, 1984) were 248 

computed with VCFtools (Danecek et al., 2011) using the --site-pi, --het, --hardy and 249 

--weir-fst-pop functions, respectively. The nucleotide diversity per site as 250 

calculated with VCFtools is equivalent to the expected heterozygosity. Graphs were 251 

plotted with ggplot2 in R (Wickham, 2016), with the Pi per site graphs being Loess 252 

smoothing plotted. The Hardy-Weinberg equilibrium plots were made with the 253 

CMplot package in R (Yin et al., 2021). The effective population size was estimated 254 

employing the linkage disequilibrium method implemented in NeEstimator v.2.0 255 

(Do et al., 2014). In accordance with the suggestions of Hoban et al. (2022), we 256 

employed Pi per site as a proxy for genetic diversity, Fst as a measure of genetic 257 

differentiation, F to evaluate individual inbreeding and the LD estimate of Ne to 258 

assess the contemporary effective population size. 259 

Analysis of outlier loci 260 

The genomic signatures of selection were searched for with BayPass version 2.4 261 

(Gautier, 2015), which accounts for the shared ancestry and population structure 262 

within the dataset by generating a covariance matrix of allele frequencies (Ω). SNPs 263 

under selection were detected employing the core model with default options. The 264 

identification of outliers was based on a calibration procedure of XtX values using 265 

pseudo-observed datasets (PODs) of 3,500 SNPs and a 1% threshold.  XtX values 266 

are analogous to Fst but formally corrected by the covariance matrix. The 267 

Manhattan plot showing the XtX values against SNP chromosomal positions was 268 

generated with the CMplot package in R (Yin et al., 2021). Genes 1 Mb upstream or 269 

downstream of SNPs under positive selection were considered as candidates to be 270 

associated with them. The gff3 file of the V4 version of the maize B73 reference 271 

genome (https://www.maizegdb.org/genome/assembly/Zm-B73-REFERENCE-272 

GRAMENE-4.0) was filtered by the chromosome in which the SNP was found using 273 
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an awk command. Filters included the interval of 1 Mb up- and downstream of the 274 

position of the outlier SNP, and the “gene” category of each feature. If available, the 275 

annotation of each gene was considered. Otherwise, the annotation of those genes 276 

containing outlier SNPs was inferred by similarity to genes from other species. 277 

Habitat suitability modelling 278 

The geographical distribution of the FNEA and HWNA groups was modelled with 279 

MaxEnt version 3.4.4 (Phillips et al., 2006) employing historical bioclimate variables 280 

(period 1970-2000) and elevation data. Briefly, a total of 158 geographically unique 281 

records were used, 25 for FNEA and 133 for HWNA. Occurrence records include 282 

geographical coordinates of the individuals used in this study and those reported 283 

for other individuals from the same genetic groups by Bracco et al. (2016) 284 

(Supplementary table 6).  Models were generated using 20,000 background points 285 

from all over the world, using hinge features only and default regularisation 286 

parameters as recommended by Bracco et al. (2016). Model performance was 287 

assessed using the area under the receiver operating characteristic curve (AUC) for 288 

both training and testing data sets. To account for the differences in sample sizes, 289 

ten and four-fold cross-validation were employed for HNWA and FNEA, 290 

respectively, to estimate errors around fitted functions and predictive performance 291 

on held-out data. The contribution of each variable to model improvement 292 

throughout the training process (percentage of contribution) and jackknife tests 293 

implemented in MaxEnt were used to determine variable relevance. The models 294 

were subsequently projected to two future climate scenarios, CNRM-CM6-1 295 

(Voldoire et al., 2019) and MRI-ESM2-0 (Yukimoto et al., 2019), for the period 2081-296 

2100 and under four CO2 emission scenarios (SSP5-8.5, SSP3-8.7, SSP2-4.5, SSP1-297 

2.6). These two future climate scenario models were chosen because they are in 298 

the middle zone of the high sensitivity models (CNRM-CM6-1) and in the middle 299 

zone of the standard sensitivity models (MRI-ESM2-0) of WorldClimb. All bioclimate 300 

variables and elevation data have a 2.5-minute spatial resolution and were retrieved 301 

from WorldClim (https://www.worldclim.org/data/cmip6/cmip6climate.html). 302 

Pairwise comparisons of model predictions were carried out by calculating the 303 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 7, 2024. ; https://doi.org/10.1101/2024.02.02.578655doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.02.578655
http://creativecommons.org/licenses/by/4.0/


11 
 

Schoener’s D (Schoener, 1968) and the I statistic (Warren et al., 2008) in ENMtools 304 

1.3 (Warren et al., 2021). 305 

Results 306 

SNP discovery and annotation 307 

Eighty-seven individuals representative of the five genetic and morphological 308 

groups previously identified for northern Argentina (i.e., HNWA: Highland maize 309 

from Northwestern Argentina; LNWA: Lowland maize from Western Argentina; 310 

PNWA: Popcorn from Northwestern Argentina; FNEA: Floury maize from 311 

Northeastern Argentina; and PNEA: Popcorn from Northeastern Argentina) were 312 

sequenced through ddRADseq (Figure 1A). A total of 3,529 SNPs distributed along 313 

the 10 maize chromosomes were obtained after filtering and imputation of the raw 314 

data matrix (Figure 1B). Functional annotation of the SNPs indicated that only a 315 

small proportion of the variants was found within exons (9.21%), with the highest 316 

percentages predicted as intronic (30.64%), intergenic (20.18%), or located 317 

downstream of genes (17.91%) (Figure 1C). 318 

Analysis of population structure 319 

Both the Neighbor-Joining tree and the PCA show two clear groups, one formed 320 

mainly by HNWA individuals and the other by FNEA individuals (Figure 2A and B). 321 

PNWA and PNEA individuals tend to cluster together within each group but closely 322 

with LNWA individuals, which occupy an intermediate position in both the network 323 

and PCA biplot. Therefore, the distinction of these three groups (PNEA, LNWA, 324 

PNWA) is less clear. It is noteworthy that, among the five LNWA individuals 325 

demonstrating a close affinity to the FNEA group, three were morphologically 326 

classified as Avati morotí (Supplementary table 1), a race indigenous to the NEA 327 

region. 328 

Based on the BIC criterion, the k-means algorithm identified k=2 and k=3 as the two 329 

most probable numbers of groups for the DAPC (Figure 2C, Supplementary Figure 330 

1). At k=3, one cluster was enriched with FNEA, another with HNWA, and a third with 331 

individuals from every a priori group (Figure 2C, Supplementary Figure 1D), whereas 332 
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at k=2, the discriminant function mostly distinguished HNWA from the remaining 333 

individuals (Supplementary Figure 1E and F). 334 

In agreement with the DAPC, STRUCTURE analysis with K=2 (the most probable K 335 

according to the delta-K method) shows that one cluster is mainly made up of 336 

HNWA individuals (orange), while the second cluster is made up of the rest of the 337 

individuals (light blue), with PNWA receiving almost equal contributions from both 338 

clusters (Figure 2D). With K=3, one group consists of HNWA individuals (orange), 339 

another group consists of NEA (FNEA and PNEA) individuals (light blue), and the 340 

third group consists mainly of individuals from LNWA and PNWA (pink) (Figure 2D). 341 

When K=4, there are two groups formed mainly by HNWA individuals (orange) and 342 

FNEA individuals (light blue), respectively, while the pink group is formed mainly by 343 

relatively admixed individuals from LNWA and PNEA (Figure 2D). In turn, PNWA 344 

individuals separate into an independent group (green) (Figure 2D). Allele frequency 345 

divergence for the inferred clusters varied from 0.0263 (light blue vs. pink) to 0.072 346 

(orange vs. green) (Supplementary Table 7, K=4). Ascending in magnitude, the 347 

genetic drift parameters for the pink, light blue, orange, and green clusters—348 

representing their divergence from a common hypothetical ancestor—were 0.161, 349 

0.207, 0.362 and 0.442, respectively. 350 

Collectively, these findings show that HNWA and FNEA consistently emerge as the 351 

two predominant groups, implying the presence of at least two distinct 352 

conservation units in Northern Argentina. Due to the limited sample sizes of PNEA 353 

and PNWA, along with the apparent heterogeneity within LNWA, these groups were 354 

not considered in subsequent analyses. 355 

Linkage disequilibrium 356 

Linkage disequilibrium decay was examined for each of the two main groups 357 

identified in the previous analyses (HNWA and FNEA) (Figure 3). Both average and 358 

single chromosome estimates showed a more rapid decay for HNWA than for FNEA, 359 

with r2 reaching 0.1 at approximately 2.2 and 2.9 MB, respectively (Figure 3). In line 360 

with this, average r2 values overall chromosomes were 0.046 for HNWA and 0.058 361 

for FNEA. 362 
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Nucleotide diversity (Pi), inbreeding coefficient (F) and effective population 363 

size (Ne) 364 

Population diversity indices were estimated for the entire set of individuals (N=87), 365 

as well as for HNWA and FNEA. Patterns of variation along chromosomes were 366 

consistent across the three groups, however Pi values per site tended to be lower in 367 

HNWA (average Pi per site= 0.173, Figure 4A), indicating less genetic variability than 368 

in FNEA (average Pi per site=0.205). Tests of Hardy-Weinberg proportions revealed 369 

that only a few SNP loci deviated from panmixia in both the HNWA and FNEA groups, 370 

as expected for outcrossing species (Supplementary Figure 2). When the total 371 

number of individuals was considered, the proportion of loci with homozygote 372 

excess rose because of population sub-structuring. For its part, estimates of 373 

inbreeding coefficients based on individual heterozygosity (FH) showed that 374 

consanguinity tended to be higher in FNEA than in HWNA individuals, with 375 

distributions centred around FH=0.25 and FH=0.12, respectively (Figure 4B). 376 

Negative FH values imply that the parents of those individuals were less related than 377 

expected under random mating, a phenomenon that may be frequently 378 

encountered in maize because of human-mediated introductions of exogenous 379 

germplasm. In terms of effective population size, the FNEA group exhibited 380 

contemporary Ne values of 51.3, 65.2, and 65.2 individuals, depending on the MAF 381 

(minimum allele frequency) thresholds of 0.05, 0.02, and 0.01, respectively (Figure 382 

4C). Conversely, the HNWA group presented Ne values of 245.7, 181.1, and 143.9 383 

for each MAF (Figure 4C). 384 

Genetic differentiation and outlier loci 385 

Analysis of genetic differentiation between HNWA and FNEA revealed an average 386 

Fst value of 0.07. The distribution of Fst values across all chromosomes was 387 

generally uniform, although chromosomes 3, 7, and 10 displayed slightly larger 388 

interquartile ranges (Figure 5A). To delve deeper into the nature and distribution of 389 

adaptive variation, we conducted a search for outlier loci using the BayPass 390 

program, identifying 56 loci that exhibited signatures of directional selection and 391 

can be potentially associated with local adaptation (Figure 5B and Supplementary 392 

Table 8). Annotation of these SNPs revealed that the majority were located within 393 
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intergenic regions (Supplementary Table 8A), though no enrichment was observed 394 

for outliers in this category compared to the complete data matrix (Fisher exact test, 395 

p > 0.05). Among the seven outlier SNPs located within gene bodies, we identified 396 

candidates associated with flowering time and stress responses (Supplementary 397 

Table 8A). In addition to the outlier SNPs identified within genes, three chromosome 398 

regions present a notable abundance of outlier SNPs. Seven of the 56 outlier SNPs, 399 

representing 5 ddRAD loci, were situated within a 1 MB region proximal to the 400 

centromere on chromosome 3, while two larger blocks were detected in 401 

chromosomes 7 and 10 (Supplementary Table 8B).  Gene models and annotations 402 

within to 2 MB windows around outlier SNPs are provided in Supplementary Table 403 

8. This window size was selected taking into consideration the observed extent of 404 

LD. 405 

Habitat suitability modelling for the HNWA and FNEA groups 406 

The indication of local adaptation in the HNWA and FNEA groups implies specific 407 

environmental requirements influencing their growth. To elucidate the potential 408 

geographical distribution of these groups, we conducted habitat suitability analysis 409 

using historical climate data and future climate models for these two groups 410 

(Figures 6 and 7). Cross-validation yielded AUC estimates exceeding 0.970 for both 411 

groups, indicating the models' robust discrimination capability. Analyses based on 412 

historical climate data unveiled that the potential distributions of both the FNEA 413 

group (Figure 6A) and the HNWA group (Figure 7A) are confined to relatively small, 414 

specific areas on the globe. The most relevant factors influencing the FNEA group 415 

were Annual Mean Temperature (variable 1), Mean Temperature of Coldest Quarter 416 

(variable 11), Temperature Seasonality (variable 4) and Mean Temperature of Driest 417 

Quarter (variable 9), while Isothermality (variable 3) and Temperature Seasonality 418 

(variable 4) were identified as the key determinants for the HNWA group 419 

(Supplementary figure 3). Pairwise comparison of D and I indices applied to habitat 420 

suitability distributions between FNEA and HNWA were 0.1 and 0.4, respectively, 421 

confirming their differential geographical distribution (Supplementary Table 9A and 422 

B). The potential geographical distribution of these two groups of maize was also 423 

modelled employing two future climate scenario models, CNRM-CM6-1 (Voldoire 424 
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et al., 2019) and MRI-ESM2-0 (Yukimoto et al., 2019), for the period 2081-2100 and 425 

under four CO2 emission scenarios (SSP5-8.5, SSP3-8.7, SSP2-4.5, and SSP1-2.6) 426 

(Figures 6B and 7B). Pairwise comparison of D and I indices applied to habitat 427 

suitability distributions between historical climate and future climate models were 428 

on average 0.21 (D) and 0.48 (I) for FNEA and 0.19 (D) and 0.48 (I) for HNWA, 429 

indicating a shift in the geographical distribution of both groups in future climate 430 

conditions (Supplementary Tables 9C, D, E and F, respectively). D and I indices 431 

comparing future climate models within themselves were on average 0.87 (D) and 432 

0.9 (I) for FNEA and 0.75 (D) and 0.84 (I) for HNWA, showing high similarity in the 433 

outcomes of the different models for each group (Supplementary Tables 10C, D, E 434 

and F, respectively). The results of our modelling suggest that suitable areas for the 435 

HNWA will significantly decrease, almost disappearing, while areas with favourable 436 

conditions for the FNEA will expand, albeit shifting towards more tropical latitudes. 437 

Discussion 438 

The delineation of evolutionary significant units is crucial for accurately interpreting 439 

EBVs. A priori delimitation of the groups examined in this work was based on genetic 440 

evidence derived from microsatellite markers and further supported by plastome 441 

sequences, morphological and phenological traits (Lia et al., 2009; Bracco et al., 442 

2016; López et al., 2021; Rivas et al., 2022). However, by assessing genome-wide 443 

genetic diversity, we aimed at enhancing resolution, while simultaneously exploring 444 

both neutral and adaptive variation. Consistent with the findings of Rivas et al. 445 

(2022) and Bracco et al. (2016) concerning NWA, our SNP data demonstrate a clear 446 

separation among floury landraces cultivated above 2,000 m.a.s.l. (HNWA), floury 447 

landraces cultivated below 2,000 m.a.s.l. (LNWA), and popcorn landraces (PNWA) 448 

(Figure 2). While the HNWA group exhibited notable cohesion, individuals from 449 

LNWA and PNWA displayed relatively high levels of admixture and lacked well-450 

defined clusters in the multivariate analyses. Moreover, our population structure 451 

results further confirmed the presence of two distinct groups in the Northeast of 452 

Argentina, FNEA and PNEA, as documented by Bracco et al. (2012, 2016), with the 453 

FNEA group consistently identified across various analyses (Figure 2).  454 
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As previously highlighted, Bracco et al. (2016) demonstrated the inclusion of HNWA 455 

maize within the Andean cluster defined by Vigouroux et al. (2008). Additionally, 456 

PNWA maize exhibited a close affiliation with landraces from Highland Mexico and 457 

Southern U.S. (Bracco et al., 2016). Conversely, FNEA and PNEA could not be linked 458 

to any other maize group within the Americas (Bracco et al., 2016). Likewise, the 459 

origins and affiliations of LNWA germplasm remain uncertain, and a direct 460 

comparison of this group with other lowland gene pools in South America had not 461 

been conducted prior to the present study. The degree of admixture inferred by 462 

STRUCTURE for LNWA, coupled with its overlap with individuals from other groups 463 

in clustering and ordination analyses (Figure 2), makes it challenging to establish 464 

the origin of this germplasm or determine whether it constitutes a single 465 

evolutionary unit. In the light of the most recent hypothesis on the diffusion of maize 466 

into South America (Vigouroux et al., 2008; Kistler et al., 2018), a plausible 467 

explanation for the observed pattern for LNWA is that it emerged as a consequence 468 

of secondary contact between Andean and lowland maize from eastern South 469 

America during pre-Columbian times. Alternatively, it could also be attributed to 470 

recent introgression between native landraces and improved germplasm derived 471 

from modern breeding. Indeed, the LNWA race Orgullo Cuarentón (Supplementary 472 

table 1), was classified by Cámara Hernández et al. (2012) as an incipient race with 473 

contributions from varieties developed in Argentina in the mid-1960s. It thus 474 

appears that further work in a global context is still needed to unveil the origin of 475 

LNWA.  476 

In summary, guided by the outcomes of our population structure analyses, we 477 

concentrated on HNWA and FNEA to estimate EBVs and evaluate the conservation 478 

prospects of these two groups. Effective population size stands as a pivotal 479 

parameter in conservation genetics, as it governs the pace of allelic frequency 480 

changes due to genetic drift and informs on future levels of diversity (Hoban et al., 481 

2022). Consequently, it is intricately associated with inbreeding and the depletion 482 

of genetic variation, in both neutral and adaptive loci (Allendorf et al., 2013). The 483 

contemporary Ne can be estimated using genetic data from a single sample 484 

(“population”) by calculating LD between loci (Waples and Do, 2010). Higher LD 485 

values signify smaller Nes, which could in turn imply that beneficial alleles are in 486 
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linkage disequilibrium with deleterious ones, thereby potentially diminishing their 487 

positive effect on adaptation (Hoffmann et al., 2017). The observed extent of LD in 488 

FNEA and HNWA, 2.9 and 2.2 Mb, respectively (Figure 3), largely surpasses 489 

estimates previously reported for maize landraces (6.3 -30 Kb; Hufford et al., 2013; 490 

McLean-Rodriguez et al., 2021) and teosintes (Zea mays mexicana: 50 Kb, Zea mays 491 

parviglumis: 10-22 Kb; Chen et al., 2022) but aligns closely with that of wheat 492 

landraces (3.6 Mb; Ma et al., 2022). In maize hybrids, LD blocks can average 28 Mb 493 

(Chaikam et al., 2019), while in rice hybrids, this figure can reach up to 75 Mb 494 

(Pradhan et al., 2020). The variations in the extent of LD between FNEA and HNWA 495 

result in a noticeable disparity in Ne, with estimated figures hovering around 50 496 

individuals for FNEA and 200 individuals for HNWA (Figure 4C). Assessing the 497 

influence of methodological and/or biological factors, identified as potential 498 

distortions to Ne inferences based on LD, such as sampling, gene flow, or admixture 499 

(Gargiulo et al., 2023), poses challenges for our dataset. This complexity arises from 500 

the “populations” under scrutiny being somewhat abstract entities that represent 501 

diverse gene pools with dispersed geographical distributions. Nevertheless, 502 

although they should be taken with caution, these estimates offer a useful 503 

framework for interpreting the remaining EBVs and provide guidance for 504 

management actions. Consistent with a reduced Ne, individuals in the FNEA 505 

population demonstrate elevated inbreeding coefficients (F) (Figure 4B), rendering 506 

them more susceptible to inbreeding depression. This phenomenon, alongside its 507 

counterpart, heterosis, has proven to be notably significant in maize, as elevated F 508 

values have been associated with considerable yield reductions (Roff, 1997). 509 

Remarkably, genetic diversity estimates were found to be higher for FNEA 510 

compared to HNWA (Figure 4A), a result that might appear unexpected considering 511 

the differences in contemporary Ne. This discrepancy suggests that FNEA 512 

underwent a relatively recent bottleneck originating from an ancestral population 513 

that likely possessed greater diversity than HNWA. Changes in heterozygosity are 514 

not immediately evident following a reduction in population size (Keyghobadi et al., 515 

2005; Lowe et al., 2005; Hoban et al., 2022). Conversely, the reduced variability 516 

observed in HNWA is consistent with the limited genetic diversity previously 517 

reported for the Andean group as a whole and is likely a consequence of the founder 518 
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effect that led to the formation of this lineage (Vigouroux et al., 2008; Takuno et al., 519 

2015; Bracco et al., 2016). It is noteworthy that both FNEA and HNWA, as well as the 520 

overall genome-wide diversity indices derived from this study, exhibit values at the 521 

lower spectrum of estimates reported for a diverse array of landraces and teosintes 522 

(Hufford et al., 2013; Rivera-Rodriguez et al., 2023), underscoring the vulnerability 523 

inherent in these groups. According to the estimates of Franklin (1980) and Soulé 524 

(1980) for natural populations of outbreeding species, a population should maintain 525 

a Ne of at least 50 individuals to avoid inbreeding depression in the short term. To 526 

minimise the impact of genetic drift and retain evolutionary potential, the Ne should 527 

surpass 500 individuals. Although specific Ne thresholds for cultivated plants 528 

remain undetermined, and annual species such as maize may tolerate lower Ne, 529 

the conjunction of high F and low Ne for FNEA suggests an elevated susceptibility 530 

to fitness and variability reductions (Hoffmann et al., 2017; Gaitán-Espitia and 531 

Hobday, 2021; Hoban et al., 2022). On the other hand, despite lower F values and 532 

higher Ne estimates for HNWA, this group may also encounter challenges in 533 

adapting to climate change, as indicated by low nucleotide diversity and Ne values 534 

below the recommended threshold of 500 individuals. 535 

Divergence between populations, as measured by Fst indices, can account for the 536 

distinctiveness of each gene pool. The genome-wide Fst estimate for the HNWA-537 

FNEA pair (Fst=0.07; Figure 5A) exceeded the values reported by Takuno et al. (2015) 538 

in their study comparing highland and lowland maize landraces from Meso- and 539 

South America (Fst=0.024 and 0.047). This higher Fst value suggests a more 540 

pronounced differentiation in allele frequencies between the highland and lowland 541 

germplasm of southern South America. This divergence can be attributed to smaller 542 

Ne, or more limited gene flow within the region. 543 

It has been proposed that genetic variation of adaptive significance serves as a 544 

more reliable predictor of the long-term success of populations compared to 545 

overall genetic variation (Hoffmann et al., 2017; Kardos et al., 2021). To quantify 546 

adaptive differences, outlier detection methods come into play by identifying loci 547 

characterised by high genetic differentiation relative to the overall population 548 

structure, indicative of their likely involvement in divergent selection. The 549 

identification of selection signatures at multiple SNPs in the comparative analysis 550 
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between HNWA and FNEA (Figure 5B), coupled with compelling evidence of local 551 

adaptation within Mexican and other South American maize landraces (Gates et al., 552 

2019; McLean-Rodríguez et al., 2021; Wang et al., 2021; Janzen et al., 2022), 553 

suggests that these two groups exhibit signs of local adaptation.  554 

Several studies have identified a correlation between flowering time or 555 

anthesis/silking interval and local adaptation in maize landraces (Mercer and 556 

Perales, 2019; Gates et al., 2019; Wang et al., 2021; Janzen et al., 2022; McLean-557 

Rodriguez et al., 2021). The modification of flowering time through domestication 558 

has been crucial for extending the adaptability of various crops to diverse latitudes, 559 

a phenomenon also observed in wheat, barley, and rice (Nakamichi, 2015). In this 560 

study, two genes associated with flowering stand out among those containing 561 

outlier SNPs (Supplementary Table 8A). The first one, Zm00001d014690, known as 562 

Arftf35 (ARF-transcription factor 35), encodes a protein involved in auxin-related 563 

axillary meristem formation in maize inflorescences (Galli et al., 2015; Galli et al., 564 

2018). The second gene, Zm00001d015765, is an ortholog of Arabidopsis AtSWC4, 565 

which suppresses the expression of FT (florigen) and accelerates flowering time 566 

when knocked down (Gómez-Zambrano et al., 2018). Additionally, three outlier 567 

SNPs were found within genes whose expression is modified under stress 568 

conditions (Supplementary table 8A): the gene Zm00001d020497, identified as 569 

cipk28 (calcineurin B-like-interacting protein kinase28), has been observed to 570 

exhibit responses to both salt and drought stresses (Chen et al., 2013; Feng et al., 571 

2022). Similarly, Zm00001d047587 encodes a glucose-6-phosphate 572 

dehydrogenase (G6PDH3) and has demonstrated induction under osmotic and cold 573 

stress (Li et al., 2023). Furthermore, Zm00001d025651, orthologous to the 574 

Arabidopsis poly(A)-specific ribonuclease AtPARN, is implicated in a mRNA 575 

degradation system crucial to ABA, salicylic acid, and stress responses in 576 

Arabidopsis (Nishimura et al., 2005). These findings align with the concept that 577 

locally adapted landraces typically grow in marginal and stressful environments. 578 

Consequently, their adaptation may involve stress-related genes that contribute to 579 

fitness trade-offs (Corrado and Rao, 2017; VanWallendael et al., 2019). 580 

Recent comparisons of genomic responses to selection have shown the 581 

participation of large haplotype blocks in population adaptation to new 582 
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environmental conditions (Hoffmann et al., 2017). In this study, besides identifying 583 

outlier SNPs within genes, three chromosomal regions have emerged as potentially 584 

involved in local adaptation (Supplementary table 8B). The first spans positions 585 

96,799,426 to 97,851,477 on chromosome 3. Structural variation analysis among 586 

the founders of the maize Nested Association Mapping (NAM) population revealed 587 

a large inversion encompassing this region, present in the inbred lines P39 and 588 

Oh43 (Hufford et al., 2021). Notably, this region has previously been associated with 589 

flowering time determination in both landraces (Navarro et al., 2017) and the NAM 590 

population (Buckler et al., 2009). Chromosomal inversions with adaptive 591 

significance may harbour genes influencing multiple traits (Huang and Rieseberg, 592 

2020). Indeed, on chromosome 3, this region includes the ys3 gene 593 

(Zm00001d041111, GRMZM2G063306), which has been shown to be under 594 

selection in Z. mays ssp. parviglumis (Aguirre-Liguori et al., 2017), and involved in 595 

iron homeostasis (Xu et al., 2022; Nozoye et al., 2013), a trait potentially important 596 

in the distinctive lateritic, iron-rich, red soils of NEA (Píccolo et al., 1998). 597 

Furthermore, the regions identified on chromosomes 7 and 10 (Supplementary 598 

table 8B) overlap with genomic tracts of Z. mays ssp. mexicana introgression into 599 

maize, previously associated with highland adaptation (Hufford et al., 2013, Calfee 600 

et al., 2021). 601 

The distribution of genetic diversity is significantly influenced by geographic and 602 

climatic features, and the increasingly dynamic environmental conditions present 603 

a substantial threat to locally adapted germplasm. The potential distribution of the 604 

HNWA and FNEA groups under historical climatic conditions (Figures 6A and 7A) is 605 

in line with the limited distribution previously observed by Bracco et al. (2016). 606 

Utilising future climate scenarios in distribution models unveils potential risks to 607 

the persistence of these maize groups, particularly of HNWA (Figures 6B and 7B). 608 

As highland maize, HNWA faces greater environmental restrictions (Figure 7B), akin 609 

to predictions made for high-altitude teosintes (Ureta et al., 2012; Sanchez 610 

González et al., 2018; Aguirre-Liguori et al., 2019). The FNEA group, on the other 611 

hand, shows a projected displacement of suitable areas to other regions worldwide 612 

(Figure 6B). Range shifts due to climate change have been well-documented for 613 

numerous wild species (Wiens, 2016). For cultivated species like maize, the 614 
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anticipated lack of suitable future climatic conditions in their regions of origin also 615 

poses a threat to the well-being of local communities. These findings underscore 616 

the importance of expanding research on how maize landraces will respond to 617 

climate change, incorporating not only local adaptation as a study variable but also 618 

considering plasticity. 619 

 620 

Conclusions 621 

The genetic diversity of species allows them to adapt to environmental changes, 622 

evolve, avoid inbreeding depression, maintain fitness in their original environments 623 

and give rise to new species (Hoban et al., 2022). Assessing this diversity through 624 

various population genetics metrics, collectively termed EBVs by Hoban et al. 625 

(2022), provides insights into the status and trends of genetic variability. Our 626 

findings emphasise the necessity of treating FNEA and HNWA as distinct 627 

conservation units, highlighting an imminent risk of genetic diversity loss among 628 

maize landraces in northern Argentina. This concern is underscored by the low Ne 629 

values and elevated inbreeding coefficients observed in the FNEA group, coupled 630 

with low Ne values and diminished nucleotide diversity in the HNWA group. These 631 

indicators point towards ongoing or potential genetic erosion, constraining the 632 

adaptability of landraces to environmental variations. The swift pace of climate 633 

change poses an additional challenge, potentially hindering the evolution of these 634 

locally adapted landraces within their native environments (Aitken and Whitlock, 635 

2013; Gaitán-Espitia and Hobday, 2021). Furthermore, species distribution 636 

modelling under future climate scenarios predicts a noticeable reduction in 637 

suitable cultivation areas. In conclusion, our results suggest that the long-term 638 

conservation of HNWA and FNEA landraces is jeopardised by the dual threats of 639 

genetic erosion and climate change. Therefore, it is imperative to promote their 640 

conservation both in situ and ex situ and expand the study of their plasticity and 641 

local adaptation to enhance our understanding of their environmental responses. 642 

 643 

 644 

 645 
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Supplementary figures 1008 

Supplementary figure 1. Supplementary data of the Principal Component 1009 

Discriminant Analysis (DAPC) performed with Adegenet in R (Jombart et al., 2008) 1010 

and shown in Figure 2C. A) Variance explained by PCA (Principal Component 1011 

Analysis). B) Values of BIC (Bayesian information criterion) versus number of 1012 

clusters. C) DAPC cross validation. D) Contingency table of the K=3 DAPC (x-axis: 1013 

DAPC groups, y-axis: maize classification, size of squares: number of individuals). 1014 

E) Density graph for K=2. F) Contingency table of the K=2 DAPC (x-axis: DAPC 1015 

groups, y-axis: maize classification, size of squares: number of individuals). HNWA: 1016 

Highland maize of Northwestern Argentina. LNWA: Lowland maize of Western 1017 

Argentina. PNWA: Popcorn of Northwestern Argentina. FNEA: Floury maize of 1018 

Northeastern Argentina. PNEA: Popcorn of Northeastern Argentina. Total number of 1019 

individuals: 87. 1020 

Supplementary figure 2. Hardy-Weinberg equilibrium obtained with VCFtools 1021 

(Danecek et al., 2011) in (A) Floury maize of Northeastern Argentina (FNEA), (B) 1022 

Highland maize of Northwestern Argentina (HNWA) and (C) all individuals 1023 

employing the χ² test. Upper panel: excess heterozygotes. Lower panel: 1024 

heterozygotes in default. The plots show the p-values versus SNP genomic 1025 

positions. Red dots indicate statistically significant excess or defect heterozygotes 1026 

(p-value < 1.42e-5; p-values corrected for multiple testing by the Bonferroni test). 1027 

Supplementary figure 3. Jacknife of regularised training gain for MaxEnt (Phillips et 1028 

al., 2004) model of (A) Floury maize of Northeastern Argentina (FNEA) and for (B) 1029 

Highland maize of Northwestern Argentina (HNWA) employing historical 1030 

bioclimatic variables and altitudes from Worldclim 1031 

(https://www.worldclim.org/data/cmip6/cmip6climate.html). Green: without 1032 

variable. Blue: with only variable. Red: all variables. (C) Definition of the variables 1033 

employed in the analyses. 1034 

Supplementary tables 1035 

Supplementary table 1. Data of individuals sequenced by ddRADseq. A priori 1036 

classification was based on Lia et al. (2009), Bracco et al. (2016), López et al. (2021) 1037 
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and Rivas et al. (2022). Individuals unequivocally assigned to the FNEA and HNWA 1038 

genetic clusters by STRUCTURE and DAPC methods (membership coefficients or 1039 

assignment probabilities > 0.75) (Figure 2C and D) are marked in orange and green, 1040 

respectively. FNEA: Floury maize of Northeastern Argentina. PNEA: Popcorn of 1041 

Northeastern Argentina. HNWA: Highland maize of Northwestern Argentina. LNWA: 1042 

Lowland maize of Western Argentina. PNWA: Popcorn of Northwestern Argentina. 1043 

VAV: ID of the “N.I. Vavilov” Plant Genetic Resource Laboratory, Faculty of 1044 

Agronomy, University of Buenos Aires. ARZM: ID of the “Banco Activo de 1045 

Germoplasma INTA Pergamino”. Coordinates are provided in decimal degrees. 1046 

Supplementary table 2.  Unfiltered VCF file obtained with Stacks v1.42 (Catchen 1047 

et al., 2013). 1048 

Supplementary table 3. Filtered VCF file. Filtering was performed with VCFtools 1049 

(Danecek et al., 2011). 1050 

Supplementary table 4. Filtered and imputed VCF file. Imputation was carried out 1051 

with Beagle (Browning et al., 2018). 1052 

Supplementary table 5. Filtered, imputed, and annotated VCF file. Annotation was 1053 

performed with SnpEff (Cingolani et al., 2012). 1054 

Supplementary table 6. Occurrence locations of FNEA (Floury maize of 1055 

Northeastern Argentina) and HNWA (Highland maize of Northwestern Argentina) 1056 

individuals employed in the MaxEnt analyses. Locations were retrieved from Bracco 1057 

et al. (2016) and this work (Supplementary Table 1). Groups were limited based on 1058 

the STRUCTURE and DAPC analyses (membership coefficients or assignment 1059 

probabilities > 0.75; Figure 2C and D). Duplicated occurrence locations were 1060 

merged into one location. Coordinates are provided in decimal degrees. 1061 

Supplementary table 7. Estimated allele frequency (P) divergence among groups 1062 

computed using point estimates of P by STRUCTURE. K=4. The classification of 1063 

each group was based on the majority presence of groups defined a priori according 1064 

to Lia et al. (2009), Bracco et al. (2016), López et al. (2021) and Rivas et al. (2022): 1065 

FNEA (Floury maize of Northeastern Argentina); PNEA (Popcorn of Northeastern 1066 
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Argentina); HNWA (Highland maize of Northwestern Argentina); LNWA (Lowland 1067 

maize of Western Argentina), and PNWA (Popcorn of Northwestern Argentina). 1068 

Supplementary table 8. (A) Supplementary data of the identification of outlier loci 1069 

with BayPass (Gautier 2015), including SNP basic data, BayPass statistics 1070 

information, SnpEff annotation of the found outlier loci, allelic frequencies of the 1071 

outlier loci, and functional annotation of genes that contain SNPs identified as 1072 

outlier loci in their bodies. HNWA: Highland maize of Northwestern Argentina. 1073 

FNEA: Floury maize of Northeastern Argentina. (B) Identification of genes within 2 1074 

Mb intervals around outlier SNPs. 1075 

Supplementary table 9. Output of ENMTools (Warren et al., 2021) showing the 1076 

Schoener’s D (Schoener et al., 1968) (A, C, E) and the I statistic (Warren et al., 2008) 1077 

(B, D, F) comparing MaxEnt distributions for historical climate  between FNEA 1078 

(Floury maize Northeastern Argentina) and HNWA (Highland maize of Northwestern 1079 

Argentina) (A, B) and between historical climate and future climate models for FNEA 1080 

(C, D) and for HNWA (E, F). Green and purple indicate values that were averaged for 1081 

comparison. 1082 
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A

B

Figure 1. Characterisation of maize landrace accessions from Northern Argentina by ddRADseq. A) Collection sites of the

individuals included in this study. The map was made with QGIS. The list of individuals is in Supplementary table 1. B) Distribution

of the SNPs detected in the chromosomes. The plot was made with CMplot (Yin et al. 2021). The colours indicate the number of

SNPs in a 1 Mbp window. C) Summary of the annotation of the SNP matrix according to the region performed with SnpEff

(Cingolani et al. 2011). HNWA: Highland maize of Northwestern Argentina. LNWA: Lowland maize of Western Argentina. PNWA:

Popcorn of Northwestern Argentina. NEA: Northeastern Argentina (Floury maize of Northeastern Argentina and Popcorn of

Northeastern Argentina). Total number of individuals: 87.
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Figure 2. Analysis of the population structure. A) Neighbor Joining tree employing Euclidean distance

(Bradbury et al. 2007). B) Principal component analysis (PCA) performed with Adegenet in R (Jombart et al.

2008). PC: Principal component. C) Discriminant Analysis of Principal Components performed with

Adegenet in R, k=3. LD: Linear Discriminant Axis. D) Bayesian analysis performed with STRUCTURE

(Pritchard et al. 2000), K=2-4. Individuals were classified a priori according to Lia et al. (2009), Bracco et al.

(2016), López et al. (2021), and Rivas et al. (2022) : HNWA (Highland maize of Northwestern Argentina),

LNWA (Lowland maize of Western Argentina), FNEA (Floury maize of Northeastern Argentina), PNEA

(Popcorn of Northeastern Argentina), and PNWA (Popcorn of Northwestern Argentina).
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Figure 3. Decay of linkage disequilibrium calculated as the squared allele frequency correlation (r2). r2 is plotted against the
physical distance between markers of (A) Highland maize of Northwestern Argentina, and (B) Floury maize of Northeastern
Argentina. The cut-off line is plotted at r2 = 0.1. The fitting of the curves was done according to the Hill and Weir’s equation
(1988).
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A

Figure 4. Diversity and effective population sizes. A) Nucleotide diversity per site (Pi or π) for each

chromosome computed with VCFtools (Danecek et al., 2011). Values were adjusted by nonparametric local

regression (LOESS). B) Histogram showing the inbreeding coefficient (F) calculated with VCFtools. C)

Effective population size (Ne) estimated employing the linkage disequilibrium method implemented in

NeEstimator v.2.0 (Do et al., 2014). Squares indicate the arithmetic mean, while the bars indicate 95%

confidence intervals. Minimum allele frequency used: 0.05, 0.02 and 0.01. HNWA: Highland maize of

Northwestern Argentina. FNEA: Floury maize of Northeastern Argentina.
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Figure 5. Detection of genomic signatures of selection between Floury maize of Northeastern Argentina (FNEA) and

Highland maize of Northwestern Argentina (HNWA). A) Box-plot of Fst values per chromosome obtained with

VCFtools (Danecek et al. 2011). B) Determination of outlier loci with BayPass (Gautier, 2015). SNPs under directional

selection (threshold: > 5.4 M.XtX value) are shown in red between dashed lines.
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Figure 6. Habitat suitability modelling of Floury maize of Northeastern Argentina (FNEA) performed with

MaxEnt (Phillips et al., 2004). Model in panel (A) represents the distribution of FNEA in the world employing

altitude and historical climate data. This model was projected into two future climate scenario models,

CNRM-CM6-1 (Voldoire et al., 2019) and MRI-ESM2-0 (Yukimoto et al., 2019), for the period 2081-2100 and

under four CO2 emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-8.7, SSP5-8.5) (B). The colours in the

references indicate the strength of the prediction for each map pixel. The graphs show the average of 4

runs.
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AUCtest = 0.997 ± 0.002
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Figure 7. Habitat suitability modelling of Highland maize of Northweastern Argentina (HNWA) performed 

with MaxEnt (Phillips et al. 2004). Model in panel (A) represents the distribution of HNWA in the world 

employing altitude and historical climate data. This model was projected into two future climate scenario 

models, CNRM-CM6-1 (Voldoire et al. 2019) and MRI-ESM2-0 (Yukimoto et al. 2019), for the period 2081-

2100 and under four CO2 emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-8.7, SSP5-8.5) (B). The colours in the 

references indicate the strength of the prediction for each map pixel. The graphs show the average of 10 

runs.
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AUCtest = 0.979 ± 0.026
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