

Producción de semillas, fertilidad y su relación con variables bioclimáticas en Buffel grass

Seed production, fertility and its relationship with bioclimatic variables in Buffel grass

Sánchez M.A. ^{1*}, Bruno C.I. ², Grunberg K.A. ¹ y Griffa S.¹

¹ UDEA INTA-CONICET. Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), CIAP-INTA. ² UFYMA INTA-CONICET. Grupo de Estadística vinculado. Facultad de Ciencias Agropecuarias (FCA), Universidad Nacional de Córdoba (UNC). *E-mail: sanchez.miguel@inta.gob.ar

))) INTRODUCCIÓN

En Buffel grass, la producción de semillas (fertilidad) se supone influenciada por las condiciones ambientales. Los objetivos fueron: 1) comparar la producción de cariópsides por panoja bajo distintos métodos de polinización y momentos de la floración, 2) determinar el momento de mayor fertilidad cruzada, y 3) identificar variables bioclimáticas con incidencia significativa en la fertilidad.

MATERIALES Y MÉTODOS

Genotipos: línea sexual (Sx); una planta S1 obtenida por autofecundación de Sx (S1) y dos híbridos F1: 32/9 (Sx x cv. Molopo) y 191 (Sx x cv. Messina). Tres individuos clonales/genotipo (G) fueron implantados en el área experimental del IFRGV-CIAP-INTA siguiendo un DCA.

Variable: producción de cariópsides/panoja determinada, por dos ciclos de cultivo, según Sánchez et al. (2021).

Variables bioclimáticas (covariables): tiempo térmico (TT), radiación acumulada (RA), fotoperiodo promedio (FO) y precipitación acumulada (PP), desde 10 días antes del inicio de cada tratamiento de polinización hasta cosecha.

Análisis estadístico: 1. Modelo Lineal Generalizado Mixto (MLGM) para una distribución binomial, con enlace logit y test DGC (p≤0,05); 2. Análisis de regresión por mínimos cuadrados parciales (PLS).

RESULTADOS

Tabla 1. Tasa de fertilidad (TF) de los genotipos (G): Sx, S1, 191 y 32/9 de *C. ciliaris* L. bajo diferentes modos de polinización (MP): Polinización abierta (PA) y autopolinización (AP) y momentos de floración (MF) para siete grupos de fertilidad (GF). Valores promedios (± E.E.). IF: inicio de floración, PF: plena floración, FF: fin de floración. Letras diferentes indican diferencias significativas (p≤0,05).

G	MP	MF	TF	GF	G	MP	MF	TF	GF	G	MP	MF	TF	GF	G	MP	MF	TF	GF
Sx		PF	0,86±0,02 a	1	Sx	A	FF	0,68±0,04 c	3 4 5	Sx	AP	PF	0,29±0,04 e	5	S1	AP	PF	0,16±0,02 f	
Sx	PA	IF	0,80±0,03 b	2	191		FF	0,62±0,05 c		32/9		IF	0,26±0,04 e		191		FF	0,13±0,02 f	6
191		PF	0,79±0,03 b		S1		PF	0,60±0,04 c		32/9		FF	0,22±0,03 e		191		IF	0,12±0,02 f	
32/9		IF	0,76±0,04 b		191		IF	0,56±0,05 c		32/9		PF	0,20±0,03 f		S1		IF	0,11±0,02 f	
32/9		FF	0,75±0,04 b		S1		FF	0,46±0,05 d		Sx		IF	0,18±0,03 f		Sx		FF	0,08±0,02 g	7
32/9		PF	0,72±0,04 c	3	S1		IF	0,37±0,05 e		S1		FF	0,16±0,03 f		191		PF	0,07±0,01 g	

Se encontraron diferencias estadísticamente significativas (p≤0,05) para la interacción G×MP×MF y la totalidad de covariables bioclimáticas consideradas.

Se conformaron siete grupos de fertilidad (GF) y todos los genotipos (G) fueron más fértiles en polinización abierta (PA) (Tabla 1).

Por PLS, los dos primeros ejes del gráfico triplot explicaron el 78,7% de la estructura común de covarianza. PP -la covariable de mayor influencia- junto con FO y TT explicaron el aumento en la tasa de fertilidad, principalmente en PF, para Sx en PA. Para S1 y 191 en PA, TT y RA fueron las covariables de mayor influencia. Hacia el final de floración, las condiciones ambientales afectaron negativamente la fertilidad en todos los genotipos, excepto para 32/9, cuya fertilidad fue mayor, al igual que en IF.

CONCLUSIÓN

Los genotipos con mayor tasa de fertilidad fueron Sx y 191. Todos fueron más fértiles en PA que en AP y el momento de mayor fertilidad cruzada fue plena floración, excepto para 32/9, cuya tasa de fertilidad cruzada fue superior al inicio y al final de floración.

Los genotipos cuya fertilidad fue más influenciada por las condiciones ambientales fueron Sx y 32/9 y la variable bioclimática con mayor implicancia en el incremento de la fertilidad fue la precipitación acumulada, seguida por el fotoperiodo promedio y el tiempo térmico.

Referencias

SÁNCHEZ et al. 2021. Proc 1st P Breed Symp. 142.

