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Abstract: Soil health indicators based on microbial biodiversity are increasingly used in agricultural
sustainability assessments. However, little is known about how microbial communities vary within
micro-environmental gradients across different land uses, which is crucial for designing field sampling
and monitoring protocols. Our objective was to assess how soil microbial communities changed
with soil depth and spatial distance across land-use types. We sampled soils in four spatial distances
(within 0.1–70 m) and four depths (within 0–40 cm) in forests, grasslands, and horticultural lands,
and combined 16S rRNA gene sequencing, DNA quantification and soil chemical characterization
to explore micro-environmental variation in microbial biomass, α-β-diversity, and communities’
assembly processes. Depth and spatial distance had differential effects on microbial biodiversity
within different land uses. Microbial biomass was most sensitive to depth, α-diversity to spatial
distance, and β-diversity to both depth and spatial distance. Deterministic processes dominate
microbial communities’ assembly along depth in all land uses, which is a promising result for
developing soil quality indicators based on microbial biodiversity. Overall, our results suggest
that collecting soil samples separated by at least 12 m is adequate to capture biodiversity changes
across land uses. However, collecting randomly within the first 10 cm is recommended for native
forests, while systematic sampling within the first 20 cm is advised for grasslands and horticultural
lands. Our findings underscore the need for land use-specific sampling frameworks in soil life-based
sustainability assessments for meaningful regional comparisons.

Keywords: microbial ecology; soil biota; soil depth; spatial autocorrelation; evolutionary processes;
Patagonia

1. Introduction

Sustainability assessments in agricultural systems increasingly rely on measuring and
monitoring soil characteristics and biological diversity and activity [1–3]. This is because
soils can be conceptualised as complex and dynamic ecosystems that support key biological
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processes (e.g., nutrient cycling, bioremediation, or plant growth promotion) with a role
in ecosystem services (e.g., primary production, pest and disease control, or greenhouse
gas regulation) [4]. The maintenance of these ecosystem services depends closely on soil
biodiversity [5]. Soil biodiversity is defined as “the variety of life belowground, from genes
and species to the communities they form, as well as the ecological complexes to which
they contribute and to which they belong, from soil micro-habitats to landscapes” [5]. This
definition highlights the multidimensionality of soil biodiversity, covering the diversity,
abundance, and activity of soil organisms, as well as the relationships among them.

In particular, soil microbial diversity is crucial for soil health—the continued ca-
pacity of soil to function as a vital living ecosystem that sustains plants, animals, and
humans—[5,6] and sustainable land management [7,8]. Therefore, there is growing global
interest in developing soil health indicators to monitor the impact of conservation and
management strategies integrating soil microbial diversity [9,10]. However, soil microbial
diversity is subject to large space and time heterogeneity [11–14], which poses serious
challenges when establishing reference values for its longitudinal monitoring in sustain-
ability assessments.

Soil microbial diversity is determined by both natural and anthropogenic factors oper-
ating at the global, regional, or local scale [15,16]. At the global scale, it has been recently
reported that spatial patterns of microbial communities are best explained when interac-
tions among vegetation cover, climate, and soil properties are considered [17]. Among
the anthropogenic factors, changes in the abundance, composition, and trophic/genic
networks of soil organisms have been reported as the result of land use intensification,
farming systems and climate change [18–24]. Soil microbial diversity is also determined by
micro-environmental variation across natural and managed ecosystems [7,25–28]; changes
in soil physicochemical characteristics with spatial distance or depth have been revealed
as crucial factors. Stochastic (i.e., random proliferation, death, and dispersal) and de-
terministic (i.e., inter-species interactions and environmental selection) processes could
also differentially shape soil microbial communities. For example, the relative impact of
stochastic and deterministic processes varies with the type of soil organisms, their relative
abundance (rare vs. abundant organisms), and soil depth or spatial distance [29–32]. Such
microvariability must be considered when designing sampling and monitoring schemes,
especially because any indicator-based sustainability assessment requires reference values,
such as benchmarks or desirable thresholds against which their values are to be compared.
Knowledge about micro-environmental variation of soil microbial communities is therefore
central for the development of soil health indicators across different ecosystems.

In forest frontier ecosystems, forest soils are often used as a benchmark to compare soil
health indicators measured in other land-use types [33–37]. This is because forest soils are
thought to harbour the original, native soil microbial diversity. Forests represent around
one third of the global land, covering 4.06 billion hectares worldwide and harbouring most
of the Earth’s terrestrial biodiversity, including soil microbial biodiversity [5,15,38]. Defor-
estation and forest degradation due to agricultural expansion remain major contributors to
forest biodiversity loss [38]. Evidence indicates that following land conversion from native
forests, there are changes in the abundance, diversity, and community composition of soil
organisms, along with alterations in their micro-environmental organization. These changes
are expected to impact ecosystem functionality [39–41], underscoring the importance of
monitoring changes in soil microbial diversity. However, most monitoring indicators for
soil biodiversity scarcely consider how soil communities vary at the micro-environmental
scale and how these patterns change after land use conversion [42]. This knowledge is key
to designing field sampling protocols for adequate monitoring of soil microbial diversity in
sustainability assessments.

We hypothesized that the micro-environmental variation patterns of soil microbial
communities in native forest differ from those in areas of alternative land use after land
conversion. Therefore, we assessed the micro-environmental variation in soil microbial
communities under contrasting land uses that differ in their degree of soil disturbance.
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In particular, we focus on (I) soil microbial communities, as they represent one of the
major functional groups of soils organisms; (II) soil depth and spatial heterogeneity, as
they are the main drivers of micro-environmental heterogeneity; and (III) the comparison
of native forest and alternative land uses (i.e., grassland and horticulture) that represent
common land use changes worldwide. In addition, we studied such variability around
native temperate forest in Northern Patagonia (Argentina) where, as in other southern
ecosystems, the environmental variation in soil microbial communities has been seldom
studied [43].

2. Materials and Methods
2.1. Study Site and Soil Sampling Design

The study was conducted in El Manso Valley (41◦35′ S, 71◦38′ W), a subregion of the
Comarca Andina del Paralelo 42◦ (CAP42). The CAP42 is an approximately 7500 km2

socio-ecological region located in northern Patagonia, Argentina, intersected by the 42nd
parallel south of the equator (Figure 1a,b). In El Manso Valley, highly diversified crop–
livestock smallholder farmers produce within a matrix of Nothofagus dombeyi-Austrocedrus
chilensis mixed native forests. Crop production is mainly related to horticulture (especially
vegetables), soft fruit (mainly berries), and, to a smaller extent, cereals. Meanwhile, the
livestock is primarily composed of sheep and cows. Soils of this area are Andosols (FAO
Soil Taxonomy) [44] of sandy-loam to silt-loam texture (average 12% clay, 46% silt, 42%
sand) [45] and are characterized by high permeability, good drainage, high water retention
capacity, and an abundant content of organic matter [46].

Current landscape heterogeneity in the study area originated from the land use conver-
sion of native forests by the first farmer–settlers in the late 19th century, intensifying around
15 years ago. The three main land uses in the study area, representing a management
intensity gradient, were selected for soil sampling: non-managed native forest and two
alternative land uses, grassland and horticulture (Figure 2a). Land uses were separated
by an average distance of 3 km, allowing comparisons among them by minimizing envi-
ronmental variation (Figure 1c). In the case of horticulture, the main vegetables cultivated
in mixed plots are Solanum tuberosum, Daucus carota, Allium sativum, Allium cepa, Spinacia
oleracea, Beta vulgaris, Lactuca sativa, and Brassica oleracea, and tillage is performed by a
two-wheel tractor at a maximum soil depth of 20 cm.

In each land use area, the soil sampling design followed three transects of four dis-
tances: 0.1 m, 1 m, 10 m, and 50 m in forest, 0.1 m, 1 m, 10 m, and 46 m in grassland, and
0.1 m, 1 m, 10 m, and 32 m in horticultural land (Figure 2b). The variation in the maximum
distance responded to the field size, which was smaller in horticultural land uses. The max-
imum spatial distance between samples was 70 m (diagonally). Four soil sampling depths
were considered: 0–5, 5–10, 10–20, and 20–40 cm (Figure 2b). This sampling design resulted
in 48 (3 × 4 × 4) soil samples for each land use, totalling 144 soil samples. The sampling
scheme was designed to generate variable distances, which allows for evaluating the spatial
autocorrelation of soil observations through geostatistical analysis (see below), while it was
also adequate to support all other analyses. Soil samples were air-dried and sieved through
2 mm mesh, homogenised, and stored at room temperature for further analyses.
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Figure 1. Geographic location of the study site. (a) Argentinean provinces of Río Negro and Chubut 
in northern Patagonia, the boundary between both provinces is determined by the 42nd parallel 

Figure 1. Geographic location of the study site. (a) Argentinean provinces of Río Negro and Chubut
in northern Patagonia, the boundary between both provinces is determined by the 42nd parallel
south of the equator; (b) Comarca Andina del Paralelo 42◦ and location of El Manso Valley (in red);
and (c) central part of El Manso Valley where the three land uses where sampled.
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Figure 2. Soil sampling design. (a) Land uses in a gradient of management intensity; (b) sampling
design to evaluate micro-environmental variation considering spatial distance and depth. “D”
distance corresponds to 50 m in forest, 46 m in grassland, and 32 m in horticulture.

2.2. Soil Microbial Biomass and Chemical Characteristics

Soil microbial diversity is commonly the primary and often the sole dimension of biodi-
versity included in biological soil assessments. Expanding this to include other dimensions
of biodiversity could provide new insights into the occurrence of common or differentiated
variation patterns. Therefore, we included an analysis of soil microbial biomass to com-
plement the assessments of soil microbial diversity. Soil microbial biomass was estimated
by quantification of soil DNA extractions. This method for the estimation of soil microbial
biomass has been previously validated and used for different soil types [47–52]. Soil DNA
was quantified for each sample by spectrophotometry at 260 nm (NanoDrop One/Onec,
Isogen life science, De Meern, Utrecht, The Netherlands). The accuracy of DNA quantifi-
cation by spectrophotometry was validated by fluorescence-based DNA quantification
(Qubit, Invitrogen, Waltham, MA, USA) on a subset of the samples, showing a significant
linear correlation between measures with a Pearson’s R of 0.86 (Figure S1).

Additionally, we assessed soil chemical characteristics to evaluate their correlation
with soil microbial biomass and soil microbial diversity. Soil pH and electric conductivity
(EC) were determined for all samples after soil suspension in water (1:2.5 ratio) [53]. Total
carbon and nitrogen were determined for samples of the first three depths (0–5, 5–10,
and 10–20 cm) by combustion (900 ◦C) in a carbon–nitrogen analyser (Thermo Electron
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Corporation, Waltham, MA, USA, NC Soil analyzer Flash EA 1112) [53]. The C/N ratio
was calculated based on total C and N measures. All soil characteristics were determined
at the Soil laboratory of the Centro Regional Universitario Bariloche–Universidad Nacional
del Comahue.

2.3. Bacterial and Archaeal Diversity Characterization based on 16S Amplicon Sequencing

Amplicon sequencing is one of the methods most frequently used for microbial diver-
sity characterization [54]. Different amplicon regions (i.e., the region of the genome that is
amplified and sequenced) have been traditionally used to characterize different organism
groups (e.g., 16S rRNA gene for procaryotes, and 18S rRNA gene or ITS region for eucary-
otes). We focused on the 16S rRNA gene that encodes a conserved component of the DNA
transcriptional machinery, and we particularly amplified a region of this gene from soil
bacteria and archaea. Therefore, soil microbial diversity characterization covered only these
two groups of soil microorganisms. Soil DNA extractions were performed using 0.25 mg of
soil and the PowerSoil DNA Isolation Kit (MoBio Laboratories Inc., Carlsbad, CA, USA)
following the manufacturer’s instructions. Soil DNA extractions were submitted to the Uni-
versity of Minnesota Genomics Center (UMGC) for Illumina Sequencing. MiSeq Illumina
sequencing (paired-end 2 × 300 bp) was focused on the V4 hypervariable region of the
bacterial and archaeal 16S rRNA gene using the 515F (5′-GTGCCAGCMGCCGCGGTAA-3′)
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) primer pair [55].

The 16S rRNA sequence data were processed using the Quantitative Insights Into Mi-
crobial Ecology pipeline (QIIME2 version 2020.8, https://docs.qiime2.org/2020.8 (accessed
on 7 September 2021)) for the data set [56]. The demultiplexed sequences were truncated to
240 bp on forward reads and to 200 bp on reverse reads and denoised to infer Amplicon
Sequence Variants (ASVs, DNA sequences distinguished by a single nucleotide change)
using DADA2 plugin with default settings [57]. All ASVs affiliated with eukaryotes, chloro-
plasts and mitochondria, and singletons (ASVs with only one sequence) were removed
from the dataset. Soil microbial diversity characterization focused on α-diversity (diver-
sity of the community within the sample) and β-diversity (diversity of the communities
between samples). In both cases analyses were performed with and without consideration
of phylogeny. To make soil samples comparable, the ASVs table was rarefied to a depth of
1200 sequences per sample. For the analysis of changes in community composition with
soil depth, taxonomy of ASVs was assigned using the Silva 138 Naive Bayes 515F/806R
taxonomy classifier [58].

Microbial α-diversity was estimated by community richness (observed number of
ASVs) and the Shannon–Wiener and inverse Simpson indices, while phylogenetic α-
diversity was estimated using Faith’s PD index. To calculate Faith’s PD index, we initially
generated a de novo phylogenetic tree from ASVs by aligning sequence fragments via
MAFFT [59], masking ambiguous alignments, and inferring a tree using the FastTree algo-
rithm [60]. Then, a rooted tree was created by putting the root at the midpoint of the farthest
tips. Afterwards, the calculation of Faith’s PD index involves summing the branch lengths
of the phylogenetic tree that represent the evolutionary relationships among the ASVs in
a community. A lower Faith’s PD value suggests low phylogenetic diversity, indicating
closely related species or a recent common ancestor; while a higher value suggests greater
phylogenetic diversity, representing more distantly related species or a broader range of
evolutionary history. Estimates of the Shannon–Wiener and inverse Simpson indices were
calculated using the function ‘estimate_richness’ from the R package phyloseq [61], while
Faith’s PD index was calculated using QIIME2 version 2020.8.

https://docs.qiime2.org/2020.8
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Shannon–Wiener index was calculated according to Equation (1),

H′ = −
S

∑
i=1

pi × ln pi (1)

where S indicates the total number of ASVs (richness), and pi corresponds to the proportion
of total sample represented by ASVi. The negative sign is applied to the entire summation,
making the index a positive value. A higher Shannon–Wiener index value indicates greater
biodiversity.

Inverse Simpson index was calculated according to Equation (2),

D = 1 −
S

∑
i=1

(p i)
2 (2)

where S indicates the total number of ASVs (richness), and pi corresponds to the proportion
of total sample represented by ASVi. A higher inverse Simpson’s index value indicates
higher diversity.

Microbial β-diversity was estimated using Bray–Curtis and weighted UniFrac (phylo-
genetic) dissimilarity distance matrices of ASVs. To calculate the weighted UniFrac matrix
the phylogenetic tree previously described was used. Bray–Curtis and weighted UniFrac
matrices were calculated using QIIME2.

Bray–Curtis’ matrix was calculated according to Equation (3),

BC =
∑|Xi − Yi|
∑(Xi + Yi)

(3)

where Xi and Yi represent the relative abundances of the i-th ASV in a pair of samples. The
summation is performed over all ASVs. The Bray–Curtis dissimilarity ranges from 0 to 1,
where 0 indicates identical compositions, and 1 indicates completely different compositions.

Weighted UniFrac matrix was calculated according to Equation (4),

WU =
∑N

i=1 wi × di

∑N
i=1 wi

(4)

where N is the number of ASVs, wi represents the weight assigned to the i-th ASV, corre-
sponding to the relative abundance, and di is the phylogenetic distance associated with the
i-th ASV. The weighted UniFrac dissimilarity ranges from 0 to 1, where 0 indicates identical
compositions, and 1 indicates completely different compositions.

2.4. Statistical Analyses

All subsequent analyses were carried out in R (v 4.2.1) [62,63] and focused on micro-
environmental variation within each land use. To examine the effect of soil depth and
spatial distance on microbial biomass and α-diversity indices the nonparametric two-way
Scheirer–Ray–Hare (SRH) test was applied using the ‘scheirerRayHare’ function from the
R package rcompanion [64,65]. We used the SRH test because ANOVA assumptions (i.e.,
normal distribution and homogeneity of variance) were not verified. For the SRH test, the
spatial distance was considered a categorical variable with four levels (A to D, each level
including samples of the three sampling points located at 0.1, 1, 10, and 50 m). A post hoc
nonparametric pairwise multiple comparisons tests (Dunn’s test) was performed using the
function ‘dunnTest’ from the R package FSA [66,67].

Additionally, the spatial micro-environmental variation of microbial biomass and α-
diversity indices was analysed by calculating a semivariogram using ‘variog’ and ‘variofit’
functions in the R package geoR [68]. The semivariogram analysis allows the evaluation
of differences in pairwise distance among all samples, complementing analyses based on
distance classes (i.e., SRH test). A semivariogram represents the spatial autocorrelation
of the samples at different sampling points with respect to a measured variable. For
each pair of samples, their spatial distance (Euclidean distance) and the semivariance
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of the measured variable are calculated. Once each pair of samples has been plotted,
according to the empirical semivariogram, a model is fitted across them, shaping the
empirical semivariogram. In a semivariogram, the nugget is the semivariance value (y-axis)
at zero distance, the sill is the semivariance value (y-axis) at which the model is flatted
(constant value of the variogram when the samples do not influence each other), and the
practical range (limit of spatial dependence) is the distance value (x-axis) at which the
model reaches the sill. Samples separated by distances shorter than the practical range are
spatially autocorrelated. For this analysis, the spherical model was fitted to the empirical
semivariograms, and the nugget, sill, and practical range were then determined. Spatial
autocorrelation occurs when observations at nearby locations are more similar to each
other than expected, by chance. Semivariograms help researchers detect the occurrence
and understand the characteristics of spatial autocorrelation.

Principal Coordinates Analysis (PCoA) was used, for each land use, to visualize
microbial community structure and its association with soil depth and spatial distance. The
analyses were based on the Bray–Curtis and weighted UniFrac distance matrices previously
calculated and were performed using the function ‘pcoa’ from the R package ape [69].
Permutational multivariate analysis of variance (PERMANOVA) was used to examine the
effect of depth and spatial distance on microbial community structure. The analyses were
based on Bray–Curtis and weighted UniFrac distance matrices using the ‘adonis2’ function
in the R package vegan [70]. A post hoc pairwise multiple comparisons test was performed
using the ‘pairwise.adonis2’ function from the R package pairwiseAdonis [71] for significant
factors (simplest PERMANOVA model). The analysis of multivariate homogeneity of group
dispersions (variances) was performed with the function ‘betadisper’ from the R package
vegan, which implements the PERMDISP2 procedure. Considering the PERMANOVA
results (see below), a SIMPER (Similarity Percentage) analysis was additionally performed
to assess the main taxonomic groups responsible for the difference in community assembly
among different depths. The analysis was performed on a Bray–Curtis matrix based on the
taxonomical assignation of AVSs at the phylum level and using the function ‘simper’ from
the R vegan package.

During field sampling, the maximal spatial distance (D distance in Figure 2b) was not
equal for all land uses (i.e., forest 50, grassland 46, and horticulture 32 m). Therefore, to
evaluate the potential impact of these differences on micro-environmental variation, the
correlation between Bray–Curtis and weighted UniFrac distance matrices and the Euclidean
distance matrix of spatial distance was calculated. The statistical significance of the com-
parisons was determined by Mantel’s statistic based on Spearman’s rank correlation with
9999 permutations, adding the distances sequentially to estimate the ’punctual’ (samples
of A distance), ’micro’ (samples of A and B distances), ’meso’ (samples of A, B, and C dis-
tances), and ’macro’ (samples of all distances) variability. The analysis was performed using
the ‘mantel’ function of the vegan R package. The highest distance value in each sequential
Euclidean distance matrix of spatial distance for forest, grassland, and horticultural land
was considered as the maximal distance between samples for each land use.

Based on the results of the sequential Mantel test, distance matrices of Bray–Curtis,
weighted UniFrac, β-nearest taxon index (β-NTI) and Bray–Curtis-based Raup–Crick metric
(RCbray) indices were regressed against Euclidean distance matrix of spatial distance by
depth. The β-NTI index compares the observed phylogenetic turnover in species between
pairs of communities and a null distribution while the RCbray compares the ASV turnover
between a pair of communities and the null distribution. Both indices were calculated
according to Jia et al. [72] following the procedure detailed in Supplementary Information.

The relative influence of deterministic (homogeneous selection and variable selection)
and stochastic (homogenizing dispersal, dispersal limitation, and undominated) processes
on community turnover were assessed according to Stegen et al. [73]. The combination
of the β-NTI and the RCbray was used to estimate the relative influence of each process
on microbial assembly and the variation according to soil depth for each land use [74,75].
|β-NTI|> 2 indicates that observed phylogenetic turnover between a pair of communities
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is significantly less than or greater than expected by chance and is governed primarily by
deterministic processes. The relative contribution of homogeneous and variable selection
was estimated as the percentage of pairwise β-NTI values < (−2) and >2, respectively. On
the other side, |βNTI| < 2 indicates the absence of selection, and a greater influence of
stochastic processes. In these cases, the relative contribution of homogenizing dispersal
and dispersal limitation was estimated as the percentage of pairwise RCbray metric values
< (−0.95) and > 0.95, respectively. The combination of |βNTI| < 2 and |RCbray| < 0.95
indicates that both phylogenetic and ASVs community turnover in observed communities
are not different from the expected by chance. Hence, neither selection nor dispersal domi-
nates the assembly processes but their influences on community turnover act together with
drift, thus being designated as ‘undominated processes’. Considering the results reported
by Tripathi et al. [76], revealing that soil pH mediates the balance between stochastic and
deterministic processes in the assembly of soil bacterial communities, the β-NTI values
were regressed against Euclidean distance matrices of soil pH calculated using the function
‘vegdist’ from vegan R package for each land use and by depth.

Finally, a partial Mantel’s test (based on Spearman’s rank correlation with 9999 per-
mutations) was used to evaluate the correlation of microbial biomass (DNA), richness
and Faith’s PD index, and Bray–Curtis and weighted UniFrac distance matrices with the
distance matrix of soil chemical characteristics and the Euclidean spatial distance. Partial
Mantel’s test allows us to evaluate the correlation between two distance matrices but
controlling by the effect of a third distance matrix. In this case, using the spatial distance
matrix as a controlling matrix permit removing the spatial autocorrelation between soil
samples and evaluating the ‘pure’ effect of the correlation between soil biological and
chemical property matrices. This control was performed by calculating the correlation
between the residuals of each of the two main distance matrices after a linear regression on
the third distance matrix. The analysis was performed by the ‘mantel.partial’ function in
the R package vegan, and visualized using the R package ggcor [77], along with Pearson’s
correlation of soil chemical characteristics (i.e., pH, EC, Total C, Total N, and C/N). We
excluded the data from the deepest layer (20–40 cm) for this analysis due to the missing
data for this depth on total C and N.

3. Results
3.1. Micro-Environmental Variation Patterns
3.1.1. Soil Microbial Biomass

Soil microbial biomass was affected by soil depth and spatial distance, while no
significant depth × distance interactions were detected according to the SRH test (Table S1).
Soil microbial biomass decreased with depth in each land use. However, the decrease in
microbial biomass in forest soils distinguished two main groups of soil depths (0–10 vs.
10–40 cm—Figure 3a). In grassland soils, the decrease followed a transition along depth
(Figure 3b), and in the horticultural land only the 0–5 cm of topsoil differed statistically
from the rest of the soil depths (Figure 3c). Spatial distance only affected microbial biomass
in the horticultural land (Table S1, Figure S2). In this type of land use, the microbial biomass
of samples from spatial distance classes A and B (0.1 and 1 m, respectively) was higher
than that of samples from spatial distance class C (10 m). In comparison, the microbial
biomass of the distance class D (32 m) was not different from the other classes (Figure S2c).
Spatial autocorrelation was not detected for microbial biomass, except for the horticultural
land where spatial autocorrelation was detected at 8.7 m among samples of 10–20 cm depth
(Figure S3).
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Figure 3. Depth effect on soil microbial biomass (estimated by quantification of soil DNA extraction)
in (a) forest, (b) grassland, and (c) horticultural land. Different letters above boxes indicate significant
differences in pairwise comparisons (Dunn’s test; p < 0.05).

3.1.2. α-Diversity

Spatial distance significantly affected α-diversity in the forest and horticultural land.
In contrast, no effect of depth or the interaction depth x spatial distance was detected
in the forest, grassland, or horticultural land (Table S1). In the forest, lower values of
richness and lower Shannon–Wiener and inverse Simpson indices were detected for spatial
distance class A than for class D, while lower values of Faith’s PD were detected for spatial
distance class A than for class C (Table 1). Conversely, higher values of all α-diversity
indices were detected in the horticultural land for spatial distance classes A and B than for
class D, with intermediate values for class C (Table 1). No impact of spatial distance on
α-diversity indices was detected in the grasslands (Table S1). Species richness exhibited
spatial autocorrelation in the forest at 8.3 m among samples of 20–40 cm depth and in the
grassland at 7.6 m among samples of 5–10 cm depth (Figure 4a,b). A similar pattern was
detected for the Shannon–Wiener and inverse Simpson indices (Figure S4A,B). Similarly,
Faith’s PD index showed spatial autocorrelation in the forest at 8.7 m among samples of
20–40 cm depth and in the grassland at 7.5 m among samples of 5–10 cm depth (Figure 4d,e).
Spatial autocorrelation in horticulture was only detected for the Shannon–Wiener index at
12.3 m among samples of 0–5 cm depth (Figure S4A,B).
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Table 1. Mean value of α-diversity index according to spatial distance classes in forest, horticultural,
and grassland soils.

Land Use α-Diversity Index Spatial Distance Classes *
A (0.1 m) B (1 m) C (10 m) D (50 m) **

Forest Richness (n◦ of ASVs) 209.83 a 281.92 ab 308.73 ab 323.08 b

(47) Shannon–Wiener 5.05 a 5.38 ab 5.43 b 5.54 b

Inverse Simpson 138.31 a 186.35 ab 209.38 ab 221.32 b

Faith’s PD 24.68 a 28.77 ab 29.68 b 30.22 b

Grassland Richness (n◦ of ASVs) 238.82 a 268.5 a 303.73 a 225.63 a

(42) Shannon–Wiener 5.21 a 5.25 a 5.44 a 5.14 a

Inverse Simpson 153.61 a 174.53 a 202.19 a 145.01 a

Faith’s PD 26.79 a 27.34 a 30.10 a 25.26 a

Horticultural Richness (n◦ of ASVs) 271.33 a 248.58 a 174.5 ab 121.71 b

(41) Shannon–Wiener 5.30 a 5.17 a 4.71 ab 4.47 b

Inverse Simpson 176.80 a 157.60 a 110.79 ab 74.68 b

Faith’s PD 36.03 a 33.51 a 25.37 ab 20.14 b

* Different letters indicate significant differences (p < 0.05) according to post-hoc nonparametric pairwise multiple
comparisons by Dunn’s test. Reported values for each index at each land use and spatial distance include data
for all soil depths, as no effect of depth or the interaction between depth × spatial distance was detected for
α-diversity variation. ** Spatial distance class D changed with land use: 50 m, 46 m, and 32 m for forest, grassland,
and horticulture.
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3.1.3. β-Diversity

PCoA analysis for Bray–Curtis’ distance matrix only explains a mean of 7,4% of the
data variation when the two first dimensions are considered (Figure S6a–c); to explain at
least 50% of the variation, ~17 dimensions would have to be considered. In the case of PCoA
analysis for the weighted UniFrac distance matrix, the first two dimensions explain a mean
of 36% of the data variation (Figure S6d–f) and ~5 dimensions would have to be considered
to explain 50% of the data variation. Globally, a trend of higher community structure
was detected for the forest than for the grassland or horticultural land. PERMANOVA
revealed an effect of depth and spatial distance on β-diversity, while no effect was detected
for their interaction. Different patterns of micro-environmental variation were detected
among land uses (Table S2). In the forest, soil microbial community composition was only
affected by depth, while in grasslands and horticultural land, it was affected by depth
and spatial distance. The pairwise contrast revealed that, in the forest, the community
turnover was similar among depth classes, being more robust when the phylogenetic
distance was considered (Figure S7). Conversely, in grasslands and horticultural land, the
community turnover was only detected among some depth or spatial distance classes and
the patterns were stronger when the phylogenetic distance was considered (Figure S7). In
the grassland, significant differences were mainly detected at 10–20 cm depth; while in
the horticultural land the statistically different classes were 0–5 and 20–40 cm. Regarding
community turnover among spatial distance classes, classes A (0.1 m) and C (10 m) differed
significantly in the grassland and A (0.1 m) and D (32 m) differed significantly in the
horticultural land.

In the forest, sequential Mantel’s tests showed no correlation between the Bray–Curtis
matrix and the spatial distance matrix (Table 2). The same result was obtained for the
weighted UniFrac matrix (Table 2). In contrast, for the grassland and horticultural land,
the spatial distance matrix showed a strong positive correlation with both matrices (Bray–
Curtis and weighted UniFrac) for distances greater than 1.4 m. Even for the grassland, the
correlation with the Bray–Curtis matrix was significant at distances smaller than 1.4 m
(Table 2). Therefore, correlation analyses between the diversity distance matrices and the
Euclidean distance of spatial distance were not influenced by differences in maximal spatial
distance of sampling among land uses.

Table 2. Mantel’s statistic based on Spearman’s rank correlation (9999 permutations) of β-diversity
distance matrices vs. Euclidean pairwise distance of spatial distance among samples by land use.

Land Use Spatial Variable Max. Distance (m) Mantel Statistic r
(Bray–Curtis)

Mantel Statistic r
(Weighted UniFrac)

Forest

Punctual 0.1 0.104 0.114
Micro 1.4 –0.197 –0.112
Meso 14.1 0.022 0.029
Macro 70.7 –0.091 –0.077

Grassland

Punctual 0.1 –0.115 0.063
Micro 1.4 0.179 * 0.096
Meso 14.1 0.319 * 0.176 *
Macro 65.0 0.228 * 0.191 *

Horticulture

Punctual 0.1 –0.084 –0.196
Micro 1.4 0.086 0.078
Meso 14.1 0.458 * 0.501 *
Macro 45.2 0.548 * 0.574 *

Signif. codes: * <0.05. Spatial variable: ’punctual’ (samples of A distance), ’micro’ (samples of A and B distances),
’meso’ (samples of A, B and C distances), and ’macro’ (samples of all distances).

In fact, significant correlations were globally not detected in the forest, except for a
negative correlation for the weighted UniFrac matrix at 0–5 and 20–40 cm depths (Figure 5).
Conversely, the dissimilarity in microbial communities showed a significant correlation
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with spatial distance in the grassland and horticultural land (Figure 5). In the horticultural
land, the dissimilarity in microbial communities increased with spatial distance, and the
correlation was stronger at lower depths. In grassland, on the other hand, although the
correlation was stronger at lower depths, the decrease in the correlation with depth was
also associated with a change in its sense (from positive to negative). This pattern was
stronger when considering the phylogenetic distance between communities (Figure 5b). For
the β-nearest taxon index (β-NTI) a similar trend was detected; while for the Raup–Crick
(Bray–Curtis) dissimilarity index, some differences were detected within each land use
(Figure S8).
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3.1.4. Changes in the Relative Abundance of Taxa

SIMPER analysis revealed that changes in bacterial and archaeal phyla contributed to
differences among soil depth classes within each land use (Figure S9). In particular, Aci-
dobacteriota, Actinobacteriota, Bacteroidota, Chloroflexi, Planctomycetota, Proteo-bacteria,
Thermoplasmatota, and Verrucomicrobiota were the most important phyla contributing
to community turnover among depth classes in the forest, grasslands, and horticultural
lands (Figure S10). Firmicutes and Myxococcota also contributed to community turnover
in the forest and horticultural land. In contrast, Crenarchaeota contributed to community
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turnover in the grasslands and horticultural land (Figure S10). In the forest, a decreasing
trend in the relative abundance of Actinobacteriota was detected along the depth. At the
same time, Firmicutes only appeared below 10 cm depth, and Thermoplasmatota between
5 and 20 cm depth. In grasslands, a decreasing trend in Bacteroidota and Myxococcota and
an increasing trend in Crenarchaeota and Chloroflexi were detected along the depth, while
Thermoplasmatota appeared below 10 cm depth. In the horticultural land, a decreasing
trend in Myxococcota and a growing trend for Acidobacteriota along depth was detected,
while Thermoplasmatota appeared below 20 cm depth. Globally, the first depth class
(0–5 cm) showed a higher relative abundance of Proteobacteria and Bacteriodota and a
lower relative abundance of Chloroflexi than the other depth classes. Moreover, a decrease
in the relative abundance of Acidobacteria, Proteobacteria, and Planctomycetota, and an
increase in Actinobacteriota, Chloroflexi, Crenarchaeota, and Firmicutes followed land
conversion from forest to horticultural land.

3.2. Processes Governing Microbial Community Assembly

Deterministic processes, mainly represented by homogeneous selection, dominated
microbial communities’ assembly in all land uses. However, within each land use, differ-
ences were detected in the relative influence of stochastic processes on community assembly
along the depth (Figure 6a). In the forest, dispersal limitation showed the highest impact on
community assembly in the 20–40 cm depth class, while undominated processes influenced
community assembly in the 0–5 and 20–40 cm depth classes (Figure 6a). In grasslands,
dispersal limitation showed greater influence on community assembly at 0–5 and 5–10 cm
than in the 10–20 and 20–40 cm depth classes (Figure 6a). In the horticultural land, the
contribution of these stochastic processes was mainly important at the 10–20 cm depth
(Figure 6a). Moreover, the importance of deterministic vs. stochastic processes on the
assembly of soil microbial communities was correlated with soil pH in grasslands and horti-
cultural land but not in the forest (Figure 6b). Patterns of this correlation showed, however,
differences for both grassland and horticultural land. In the horticultural land, a correlation
was detected at all depths, being especially strong at the 5–10 and 10–20 cm depths. The
correlation was globally weak in grasslands at all depths and only significant at a depth
of 10–20 cm. Positive correlations indicate that, as the difference in soil pH increased, the
contribution of stochastic processes to microbial community assembly also increased.

3.3. Chemical Drivers of Micro-Environmental Variation

Partial Mantel’s tests showed strong correlations between soil microbial biodiversity
variables and soil chemical characteristics, although different patterns were detected for
each land use (Figure 7). In the forest, the number of correlations showed the following
trend: Bray–Curtis (5) > weighted UniFrac and microbial biomass (4) > richness and Faith’s
PD (1). Globally, correlations with electric conductivity (EC), total N, and total C were
stronger than correlations with pH or C/N ratio. No correlations with pH were detected
in grasslands, and richness and Faith’s PD showed no correlation with any soil chemi-
cal property. Microbial biomass and weighted UniFrac showed the highest number of
correlations (4), while Bray–Curtis showed a lower number of (3) and weaker values for
correlations with soil chemical characteristics. A similar pattern was detected for horticul-
tural land, although pH correlation was also seen for weighted UniFrac. Interestingly, pHs
correlation with EC, total C, total N, and C/N ratio showed different patterns according to
land use. Comparing forest to grassland, significant correlations were lower and among
different chemical characteristics (Figure 7). Comparing forest to horticulture, significant
correlations of pH with other soil variables were completely inversed (from negative to
positive correlations), and the correlation with C/N ratio that was not detected in forest
was also added (Figure 7). Means and standard deviations of soil chemical characterization
by depth and spatial distance class are shown on Table S3 and Table S4, respectively.
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Figure 7. Chemical drivers of micro-environmental variation. Correlation of quantification of soil
DNA extraction (microbial biomass), richness, Faith’s PD index, Bray–Curtis, and weighted UniFrac
distance matrices with distance matrix of soil chemical characteristics for forest (a), grassland (b), and
horticultural (c) land uses combining 0–5, 5–10, and 10–20 cm depths. Pairwise comparisons of soil
characteristics are shown with a colour gradient representing Pearson’s correlation coefficients, and
crosses denote non-statistically significant correlations (p > 0.01). Edge width corresponds to the par-
tial Mantel’s r statistic for the corresponding distance correlations (controlling for the effect of spatial
distance matrix), and edge colour represents the statistical significance based on 9999 permutations.
EC: electric conductivity; TN: total nitrogen; TC: total carbon; CN: carbon/nitrogen ratio.
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4. Discussion

The analysis of soil microbial biodiversity in native forests, grasslands, and horti-
cultural land indicates that small variations in both soil depth and spatial heterogeneity
affected soil microbial diversity differently (Figures 4, 5 and S5–S7; Tables 1, 2, S1 and S2).
Our results indicate that deterministic processes dominate microbial communities’ assem-
bly along depths in all land uses, while the contribution of stochastic processes varied
across land uses (Figure 6a). The phylogenetic diversity indices showed stronger patterns
than indices based only on sequence data, but the combination of both is crucial for evalu-
ating the relative influence of deterministic and stochastic processes (Figures 5, S7 and S8).
Further, the correlation between soil chemical characteristics and soil microbial diversity in-
dices changed after land use conversion, and the relative contribution of deterministic and
stochastic processes correlated with pH after conversion (Figures 6b and 7). In the follow-
ing sections, we discuss the implications of our findings for the design of sampling schemes
for monitoring soil health through soil microbial diversity in sustainability assessments.

4.1. How to Sample for Soil Microbial Biodiversity Studies?

In recent years, especially since high-throughput sequencing technologies became
more widely accessible, several studies focused on the effects of land use change or agricul-
tural intensification on soil biodiversity at the macro-environmental scale [78–80]. However,
our results revealed that soil biodiversity also varied at a micro-environmental scale and
that the detected patterns differ across land uses. We showed that depth and spatial dis-
tance are important factors regulating the micro-environmental variation in soil biodiversity
indices. Furthermore, we showed that the effect of depth and spatial distance differed
among biological variables across land uses. In general terms, in our study, microbial
biomass was sensitive to soil depth (cf. Figures 3, S2 and S3, Table S1), α-diversity was
affected by spatial distance (cf. Figures 4 and S4, Tables 1 and S1), and β-diversity was
affected by both soil depth and spatial distance (cf. Figures 5 and S7, Table S2). These
results highlight that micro-environmental variation in different aspects of soil biodiversity
should be considered during sampling design for the assessment and monitoring of soil
use and management.

In the case of the forest soil analysed here, the variation in soil microbial biomass,
α-diversity, and β-diversity indicate that, globally, soil microbial communities have high
a micro-environmental variation but also that this variation was mostly homogenously
distributed and not autocorrelated. This means that a random collection of topsoil samples
(0–10 cm depth) separated at least by 10 m should be adequate to capture the micro-
environmental variation in soil microbial communities (cf. Figures 3, 4 and S4–S7). How-
ever, a different pattern of micro-environmental variation in soil biodiversity indices was
observed in the alternative land uses.

Horticultural soil exhibited high variability, and this variation was heterogeneously
distributed and autocorrelated. The differences observed between forest and horticultural
land could be associated with land fragmentation due to horticultural practices and soil
management effects, such as tillage, planting rows separated by bare soil (inter-rows), fer-
tilization, irrigation in cultivated rows, high crop rotation, low density, and the penetration
of plant roots [35]. Regarding designing a sampling scheme for assessing this horticultural
soil, results indicate that soil microbial biodiversity characterization should consider the
regular collection of soil samples separated at least by 12 m (according to autocorrelation
results) and covering the first 20 cm of soil depth (cf. Figures 3, 4 and S4–S7).

In the case of grassland soil, variation with space and depth was less intense than in
horticultural land, and could mostly be explained by soil compaction, low organic matter
input, high nitrogen input, high density of roots but with less rooting depth, all of which
are associated with continuous animal grazing [81]. The results indicate that soil microbial
biodiversity characterization of grassland in our study conditions should consider the
regular collection of soil samples separated at least by 8 m (according to autocorrelation
results) and covering the first 20 cm of depth (cf. Figures 3, 4 and S4–S7).
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Hence, the observed patterns suggest that a standardized soil sampling method, i.e.,
same depth range and spatial distance, would not necessarily capture the same type and
magnitude of soil microbial variability across different land uses. However, a simple
sampling design could be proposed considering the detected differences across land uses.
Based on our results, the collection of soil samples separated at least by 12 m should be
adequate to capture soil biodiversity changes across these land uses, considering a random
collection covering the first 10 cm of soil for native forests and a regular collection covering
the first 20 cm of soil for grasslands and horticultural lands. However, this sampling
design should be validated through further research, incorporating new cases of forests,
grasslands, and horticulture, as well as other land uses not considered in this study (e.g.,
managed forests, perennial crops, among others).

4.2. Why Consider the Micro-Environmental Scale in the Development of Biodiversity-Based
Indicators of Soil Health

The decrease in microbial biomass with depth, observed in the forest, grassland,
and horticultural soils, is consistent with previously reported results from different land
uses, such as grasslands, croplands, and forests [28,82]. In our study, soil depth variation
patterns differed across land uses, mainly due to the greater microbial biomass present
in forest topsoil (cf. Figure 3). Such patterns of decreasing microbial biomass with soil
depth across land uses was also detected for soil chemical characteristics, such as total
C and N (cf. Table S3). These patterns have been previously associated with the effect
of tillage [83–85]. Grazing may affect the rooting pattern of grazed species and create
differential soil compaction [86], hence changing soil characteristics and nutrient availability.
The grassland analysed in our study was not established through tillage and the sowing of
fodder species, but simply by removing the forest and letting the spontaneous herbaceous
vegetation colonise the soil. Spatial micro-variability may also be associated with the spots
where trees grew before deforestation took place, as seen in other studies [87].

Spatial autocorrelation of microbial biomass variables was previously reported at
different scales and land uses by several authors [88–91]. The decrease in microbial biomass
with spatial distance in horticultural land could be affected by the spatial pattern of
cropping activities. Soil samples taken at 0.1–1 m have a high chance of belonging to
cropping rows and those taken 10 m away have the chance of falling in the inter-row space,
while those taken at 32 m distance may include even greater variability and fall within a
different horticultural field plot. Heterogeneity may also be associated with fertilization
and tillage patterns, influencing the autocorrelation results and explaining the correlation
we observed with chemical soil characteristics (pH, electric conductivity, total C, total N,
and C/N ratio). Differences in soil microbial biodiversity and chemical characteristics
between soil samples from row and inter-row have been previously reported in raspberry
production in this region [35]. In grasslands, spatial micro-variability patterns may result
from animal depositions, differential trampling or selective grazing of most palatable
species [92].

We found that α-diversity was only affected by spatial distance, which is consistent
with the results reported previously at multiple scales [93–96]. Nonetheless, other works
have found that α-diversity is also affected by soil depth [97–99]. These differences reinforce
the idea that the microenvironment could have differential effects on soil biodiversity across
land uses, geographies, climates, or soil history, among other factors. Considering soil
chemical characteristics, the C/N ratio was the only variable that correlated with α-diversity
in the forest. The low variation in the C/N ratio for grassland and horticulture could explain
the absence of correlation.

On the other hand, β-diversity showed a more complex behaviour, as it was affected
by both depth and spatial distance. Multiple studies suggest that changes in microbial com-
munity composition are greater between sites than within sites and that microorganisms
are specialized to certain environments (e.g., land uses) [21]. In addition, the prevalence
of deterministic processes in the assemblage of soil microbial communities is a promis-
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ing outcome in developing biodiversity-based indicators of soil health since changes in
communities can then be explained by land uses.

Furthermore, we deem it crucial to consider both diversity estimators (α-diversity and
β-diversity) based on presence/absence (e.g., richness) or abundance data (e.g., Shannon–
Wiener or Simpson indices, Bray–Curtis distance), as well as estimators based on phylogeny
(e.g., Faith’s PD index, UniFrac distance). Although the presence/absence and abundance
of microbial groups are informative and easier to calculate, the phylogenetic dimension
of diversity is key to understanding the structure and functioning of microbial commu-
nities. Microbial communities with higher phylogenetic α-diversity and/or β-diversity
are thought to be more resilient to disturbances owing to their evolutionary potential to
adapt to changing environmental conditions [100]. Phylogenetic diversity can also be a
proxy for the potential functional diversity in a microbial community, as closely related
microorganisms often share similar ecological traits [100,101]. Regarding the evaluation
and monitoring of land use conversion, our results indicate that phylogenetic diversity
shows to be more sensitive to micro-environmental changes, and similar results were
previously found by Liu et al. [102].

4.3. Limitation of the Study and Further Research

We find it appropriate to point out certain limitations of our work and discuss further
steps. By design, our soil sampling took place in a single season and at a single site per
land use. This was meant to limit background variability to a minimum, by avoiding
meso- and macro-environmental variation such as differences in soil type, slope, exposi-
tion, altitude, rainfall, and broad differences in soil management. Moreover, we selected
land uses separated by less than 3 km, which are representative—in terms of biological
and chemical characteristics of the soil—of a broader range of sites at El Manso Valley
(Figure S11). Thus, the observed differences in soil biodiversity could mainly be attributed
to the micro-environmental variability of each land use type. A more comprehensive range
of environmental variability, land uses, and soil management will result, however, in more
comprehensive assessments allowing us to validate our results. Furthermore, as previous
studies found that land use influences how microbial communities change over time [12],
it would be interesting to follow our study over several years and add cases of recently
converted land.

We used the quantification of DNA extracted from soil as a proxy for microbial biomass
in our study without validation, which could, to some extent, have created bias within our
results due to, for example, differences in the contribution of soil fauna and/or plant DNA
to total DNA. However, the correlation between the quantity of DNA extracted from soil
and the microbial C biomass (based on the reference method of chloroform-fumigation-
extraction of Vance et al. [103]) has been previously validated in different soil types around
the world (range of r values = 0.64–0.96), and has been used to assess differences in soil
microbial biomass among geographic regions or farming systems and to assess the effects
of soil characteristics and management on microbial biomass [47–52,104–108]. Therefore,
based on previous reports, we consider that, in our case, the potential bias should not
substantially affect the micro-environmental variation pattern within each land use.

Regarding 16S rRNA gene sequencing we used a low number of reads for rarefaction
aiming to retain most of the soil samples and sampling conditions (depth and spatial
distance) for the three land uses in the analyses. This decision should determine an
underestimation of bacterial and archaeal diversity, which could explain why an effect of
depth was not detected for α-diversity. However, across a wide range of soils, bacterial
communities are dominated by a few phylotypes, i.e., 2% of the bacterial phylotypes
account for around 41% of 16S rRNA gene sequences [109], suggesting that our decision
should have low effect on representativeness of community composition. This hypothesis
is supported by the main bacterial phyla identified in our work, which are consistent
with those reported in the global atlas of dominant soil bacteria [109]. Our results are
also supported previous reports on the main microbial groups for different land uses,
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such as a higher relative abundance of Acidobacteria and Proteobacteria, and a lower relative
abundance of Firmicutes and Chloroflexi in natural compared to in agricultural soils [110,111].
They are also supported by the similar trend found among different depths for each
land use, showing that compositional change with land use was successfully captured
(cf. Figures S9 and S10).

Although our main goal was to assess how soil microbial biodiversity changed with
soil depth and spatial distance, we recognize that this micro-environmental variation could
be driven by soil characteristics. Therefore, we assessed the correlation between biodiversity
indices and soil characteristics focusing on chemical characteristics more likely affected
by land use change and associated soil management (i.e., pH, electric conductivity, total
C, total N, and C/N ratio). Clearly, other soil chemical and physical characteristics could
be also relevant, and their assessment should be considered in further research, especially
in studies involving a more comprehensive range of environmental variability, in which
case differences in soil type could be also expected. Finally, we have not included in this
study any biodiversity variable associated with the functionality of microbial communities,
such as biological or enzymatic activity. This may reveal a different pattern that could have
important implications for sampling designs.

5. Conclusions

The combined analyses of soil microbial biodiversity in native forest, grassland, and
horticultural land conducted in our study reveal that several microbial communities varied
at a micro-environmental scale, following different patterns across land uses. Both soil
depth and spatial distance play pivotal roles in shaping such micro-environmental varia-
tions in soil biodiversity, and the patterns of microbial biodiversity indices differ broadly
between native forest and alternative land uses. Notably, phylogenetic diversity indices
exhibit more pronounced spatial patterns compared to indices based solely on sequence
data. However, considering both types of indices in combination is essential to assess
the relative influence of deterministic and stochastic processes on community turnover.
Moreover, our study elucidates that deterministic processes predominantly govern the
assembly of microbial communities along soil depth across all land uses, with the contri-
bution of stochastic processes varying according to land-use types. The predominance of
deterministic over stochastic processes is a promising result for the development of soil
quality indicators based on microbial biodiversity. In addition, we observed a correlation
between the relative contributions of deterministic and stochastic processes and soil pH
levels following conversion. Lastly, we found that the correlation between soil chemical
characteristics and soil microbial biodiversity indices undergoes changes after land-use
conversion. This has implications for soil sampling design in sustainability monitoring
schemes. Future research on sustainability assessments based on soil microbial biodiversity
should consider not only macro-environmental but also micro-environmental variations
within land uses, particularly the occurrence of spatial autocorrelation patterns. Our find-
ings emphasise the need to develop land use-specific sampling frameworks in sustainability
assessments. For example, by randomly sampling the first 10 cm of forest soils and system-
atically sampling the first 20 cm of grasslands and horticultural land, as illustrated in the
present case from the Patagonian Forest frontier ecosystems. Moreover, we recommend
exploring different variables of soil biodiversity—including those based on phylogeny—as
they exhibit diverse responses to micro-environmental variation, contributing to a more
comprehensive evaluation of soil health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su16031236/s1, Supplementary Information on Deterministic and
stochastic processes modelling microbial community assembly; Table S1: p-values for nonparametric
two-way Scheirer–Ray–Hare test of microbial biomass and α-diversity micro-environmental variation
in forest, grassland and horticulture land; Table S2: PERMANOVA test statistics (R2 and significance)
of the effect of depth and spatial distance factors and their interaction on the β-diversity of soil
microbial communities; Table S3: Mean value and standard deviance of soil chemical properties

https://www.mdpi.com/article/10.3390/su16031236/s1
https://www.mdpi.com/article/10.3390/su16031236/s1


Sustainability 2024, 16, 1236 21 of 26

according to soil depth classes in forest, grassland and horticulture lands; Table S4: Mean value and
standard deviance of soil chemical properties according to spatial distance classes in forest, grassland
and horticulture lands; Figure S1: Pearson’s correlation between spectrophotometric-based DNA
quantification and florescence-based DNA quantification; Figure S2: Spatial distance effect on soil
microbial biomass (estimated by quantification of soil DNA extraction) in forest (a), grassland (b)
and horticulture (c) soils; Figure S3: Empirical semivariograms (dots) and spherical fitted model
(dash lines) for microbial biomass in forest (a), grassland (b), and horticultural (c) soils; Figure S4A:
Empirical semivariograms (dots) and spherical fitted model (dash lines) for Shannon–Wiener index
in forest (a), grassland (b) and horticulture (c) soils; Figure S4B: Empirical semivariograms (dots)
and spherical fitted model (dash lines) for inverse Simpson index in forest (d), grassland (e), and
horticultural (f) soils; Figure S5A: Empirical semivariograms (dots) and spherical fitted model
(dash lines) for richness index in forest (a), grassland (b), and horticultural (c) soils; Figure S5B:
Empirical semivariograms (dots) and spherical fitted model (dash lines) for Faith’s PD index in
forest (d), grassland (e), and horticultural (f) soils; Figure S6: Soil microbial community structure.
Principal Coordinates Analysis (PCoA) plots based on Bray-Curtis (a–c) and weighted UniFrac (d–f)
distance matrices of microbial communities of forest (a,d), grassland (b,e), and horticultural (c,f)
soils; Figure S7: Post hoc pairwise permutational multivariate analysis of variance test (pairwise
PERMANOVA, 9999 permutations) for microbial community composition according to depth and
spatial distance; Figure S8: Correlation of Raup–Crick (Bray–Curtis) dissimilarity (a) and β-nearest
taxon index (β-NTI) (b) and Euclidean distance matrix of spatial distance for each soil depth at forest,
grassland, and horticultural land use; Figure S9: Relative abundance of microbial taxa at phylum level
for each depth class by land use; Figure S10: Relative abundance of main microbial phyla contributing
to community turnover among depth classes in the forest, grassland, and horticultural soils resulting
from SIMPER analysis; Figure S11: Comparison of soil biological and chemical characteristics between
different sites for different land uses within sites at El Manso Valley in Río Negro Province, Northern
Patagonia, Argentina. References [70,73–75,112,113] are cited in the supplementary materials.

Author Contributions: Conceptualization, V.E.Á., V.A.E.M., J.F.S. and P.A.T.; methodology, V.E.Á.,
V.A.E.M. and P.A.T.; software, V.E.Á. and X.J.; formal analysis, V.E.Á.; investigation, V.E.Á. and
E.C.; resources, V.E.Á., V.A.E.M. and A.G.C.; data curation, V.E.Á.; writing—original draft prepara-
tion, V.E.Á. and V.A.E.M.; writing—review and editing, V.E.Á., V.A.E.M. and P.A.T.; visualization,
V.E.Á.; supervision, V.A.E.M. and P.A.T.; project administration, V.A.E.M., J.F.S. and P.A.T.; funding
acquisition, V.A.E.M., J.F.S. and P.A.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Agency for the Promotion of Research, Technolog-
ical Development and Innovation (ANPCyT, Argentina) [PICT 2018-03880]; the National Institute of
Agricultural Technology (INTA, Argentina) [2019-PE-E1-I020-001, 2019-PD-E2-I037-002]; the National
Council for Scientific and Technical Research (CONICET, Argentina) [PUE 0069]; the World Wildlife
Fund (WWF); and the ERA-NET Cofund SusCrop project potatoMETAbiome [Grant No. 771134],
supported by EU Horizon 2020 research and innovation program and the Dutch Research Council
(NWO), and part of the Joint Programming Initiative on Agriculture, Food Security and Climate
Change (FACCE-JPI).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated and analysed during the current study are
available in the NCBI Sequence Read Archive (SRA) under BioProject ID PRJNA892123, http://www.
ncbi.nlm.nih.gov/bioproject/892123 (accessed on 19 October 2022).

Acknowledgments: We would like to thank the family farmers from El Manso Valley (Rio Negro
province, Argentina) for their priceless cooperation, Juan Manuel Ag

USV Symbol Macro(s) Description
03C8 ψ \textpsi GREEK SMALL LETTER PSI

03C9 ω \textomega GREEK SMALL LETTER OMEGA

03CA ϊ \"{\textiota} GREEK SMALL LETTER IOTA WITH DIALYTIKA

03CB ϋ \"{\textupsilon} GREEK SMALL LETTER UPSILON WITH DIALYTIKA

03CC ό \'{\textomicron} GREEK SMALL LETTER OMICRON WITH TONOS

03CD ύ \textupsilonacute
\'{\textupsilon}

GREEK SMALL LETTER UPSILON WITH TONOS

03CE ώ \'{\textomega} GREEK SMALL LETTER OMEGA WITH TONOS

03DA Ϛ \textStigmagreek GREEK LETTER STIGMA

03DB ϛ \textstigmagreek GREEK SMALL LETTER STIGMA

03DC Ϝ \textDigammagreek GREEK LETTER DIGAMMA

03DD ϝ \textdigammagreek GREEK SMALL LETTER DIGAMMA

03DE Ϟ \textKoppagreek GREEK LETTER KOPPA

03DF ϟ \textkoppagreek GREEK SMALL LETTER KOPPA

03E0 Ϡ \textSampigreek GREEK LETTER SAMPI

03E1 ϡ \textsampigreek GREEK SMALL LETTER SAMPI

03F6 ϶ \textbackepsilon GREEK REVERSED LUNATE EPSILON SYMBOL

0400 Ѐ \`{\CYRE} CYRILLIC CAPITAL LETTER IE WITH GRAVE

0401 Ё \CYRYO
\"{\CYRE}

CYRILLIC CAPITAL LETTER IO

0402 Ђ \CYRDJE CYRILLIC CAPITAL LETTER DJE

0403 Ѓ \'{\CYRG} CYRILLIC CAPITAL LETTER GJE

0404 Є \CYRIE CYRILLIC CAPITAL LETTER UKRAINIAN IE

0405 Ѕ \CYRDZE CYRILLIC CAPITAL LETTER DZE

0406 І \CYRII CYRILLIC CAPITAL LETTER BYELORUSSIAN-UKRAINIAN I

0407 Ї \CYRYI
\"{\CYRII}

CYRILLIC CAPITAL LETTER YI

0408 Ј \CYRJE CYRILLIC CAPITAL LETTER JE

0409 Љ \CYRLJE CYRILLIC CAPITAL LETTER LJE

040A Њ \CYRNJE CYRILLIC CAPITAL LETTER NJE

040B Ћ \CYRTSHE CYRILLIC CAPITAL LETTER TSHE

040C Ќ \'{\CYRK} CYRILLIC CAPITAL LETTER KJE

040D Ѝ \`{\CYRI} CYRILLIC CAPITAL LETTER I WITH GRAVE

040E Ў \CYRUSHRT
\U{\CYRU}

CYRILLIC CAPITAL LETTER SHORT U

040F Џ \CYRDZHE CYRILLIC CAPITAL LETTER DZHE

0410 А \CYRA CYRILLIC CAPITAL LETTER A

0411 Б \CYRB CYRILLIC CAPITAL LETTER BE

0412 В \CYRV CYRILLIC CAPITAL LETTER VE

0413 Г \CYRG CYRILLIC CAPITAL LETTER GHE

0414 Д \CYRD CYRILLIC CAPITAL LETTER DE

0415 Е \CYRE CYRILLIC CAPITAL LETTER IE

0416 Ж \CYRZH CYRILLIC CAPITAL LETTER ZHE

0417 З \CYRZ CYRILLIC CAPITAL LETTER ZE

0418 И \CYRI CYRILLIC CAPITAL LETTER I

0419 Й \CYRISHRT
\U{\CYRI}

CYRILLIC CAPITAL LETTER SHORT I

041A К \CYRK CYRILLIC CAPITAL LETTER KA

041B Л \CYRL CYRILLIC CAPITAL LETTER EL

041C М \CYRM CYRILLIC CAPITAL LETTER EM

041D Н \CYRN CYRILLIC CAPITAL LETTER EN

041E О \CYRO CYRILLIC CAPITAL LETTER O

041F П \CYRP CYRILLIC CAPITAL LETTER PE

0420 Р \CYRR CYRILLIC CAPITAL LETTER ER

0421 С \CYRS CYRILLIC CAPITAL LETTER ES

0422 Т \CYRT CYRILLIC CAPITAL LETTER TE

19

ero, Juan Pablo Duprez and Juan
De Pascuale for their help in fieldwork, and the Center for Information Technology of the University of
Groningen for their support and for providing access to the Peregrine High-Performance computing
cluster.

Conflicts of Interest: The authors declare no conflicts of interest.

http://www.ncbi.nlm.nih.gov/bioproject/892123
http://www.ncbi.nlm.nih.gov/bioproject/892123


Sustainability 2024, 16, 1236 22 of 26

References
1. Huera-Lucero, T.; Labrador-Moreno, J.; Blanco-Salas, J.; Ruiz-Téllez, T. A Framework to Incorporate Biological Soil Quality

Indicators into Assessing the Sustainability of Territories in the Ecuadorian Amazon. Sustainability 2020, 12, 3007. [CrossRef]
2. Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A Review on Effective Soil Health Bio-Indicators for

Ecosystem Restoration and Sustainability. Front. Microbiol. 2022, 13, 938481. [CrossRef]
3. Lee, S.H.; Kim, M.S.; Kim, J.G.; Kim, S.O. Use of Soil Enzymes as Indicators for Contaminated Soil Monitoring and Sustainable

Management. Sustainability 2020, 12, 8209. [CrossRef]
4. Smith, P.; Keesstra, S.D.; Silver, W.L.; Adhya, T.K.; De Deyn, G.B.; Carvalheiro, L.G.; Giltrap, D.L.; Renforth, P.; Cheng, K.; Sarkar,

B.; et al. Soil-Derived Nature’s Contributions to People and Their Contribution to the Un Sustainable Development Goals. Philos.
Trans. R. Soc. B Biol. Sci. 2021, 376, 20200185. [CrossRef]

5. FAO; ITPS; GSBI; CBD; EC. State of Knowledge of Soil Biodiversity—Status, Challenges and Potentialities; Food and Agriculture
Organization: Rome, Italy, 2020.

6. Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil Health and Sustainability. Adv. Agron. 1996, 56, 1–54. [CrossRef]
7. Costantini, E.A.C.; Mocali, S. Soil Health, Soil Genetic Horizons and Biodiversity. J. Plant Nutr. Soil Sci. 2022, 185, 24–34.

[CrossRef]
8. Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth

Environ. 2020, 1, 544–553. [CrossRef] [PubMed]
9. FAO. Keep Soil Alive, Protect Soil Biodiversity, 19–22 April 2021—Outcome Document; FAO: Rome, Italy, 2021.
10. Guerra, C.A.; Delgado-Baquerizo, M.; Duarte, E.; Marigliano, O.; Görgen, C.; Maestre, F.T.; Eisenhauer, N. Global Projections of

the Soil Microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 2021, 30, 987–999. [CrossRef] [PubMed]
11. Ranjard, L.; Dequiedt, S.; Chemidlin Prévost-Bouré, N.; Thioulouse, J.; Saby, N.P.A.; Lelievre, M.; Maron, P.A.; Morin, F.E.R.;

Bispo, A.; Jolivet, C.; et al. Turnover of Soil Bacterial Diversity Driven by Wide-Scale Environmental Heterogeneity. Nat. Commun.
2013, 4, 1434. [CrossRef] [PubMed]

12. Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal Variability in Soil Microbial Communities across
Land-Use Types. ISME J. 2013, 7, 1641–1650. [CrossRef] [PubMed]

13. Nunan, N.; Schmidt, H.; Raynaud, X. The Ecology of Heterogeneity: Soil Bacterial Communities and C Dynamics. Philos. Trans.
R. Soc. B Biol. Sci. 2020, 375, 20190249. [CrossRef]

14. Fierer, N. Microbial Biogeography: Patterns in Microbial Diversity across Space and Time. In Accessing Uncultivated Microorganisms:
From the Environment to Organisms and Genomes and Back; ASM Press: Washington, DC, USA, 2014; pp. 95–115. [CrossRef]

15. Orgiazzi, A.; Bardgett, R.D.; Barrios, E.; Behan-Pelletier, V.; Briones, M.J.I.; Chotte, J.-L.; De Deyn, G.B.; Eggleton, P.; Fierer, N.;
Fraser, T.; et al. Global Soil Biodiversity Atlas European Commission; Publications Office of the European Union: Luxembourg, 2016;
ISBN 9789279481697.

16. Turbé, A.; De Toni, A.; Benito, P.; Lavelle, P.; Lavelle, P.; Ruiz, N.; Van der Putten, W.H.; Labouze, E.; Mudgal, S.; De Toni, A.; et al.
Soil Biodiversity: Functions, Threaths and Tools for Policy Makers; European Commission: Luxembourg, 2010; ISBN 9789279206689.

17. Labouyrie, M.; Ballabio, C.; Romero, F.; Panagos, P.; Jones, A.; Schmid, M.W.; Mikryukov, V.; Dulya, O.; Tedersoo, L.; Bahram, M.;
et al. Patterns in Soil Microbial Diversity across Europe. Nat. Commun. 2023, 14, 3311. [CrossRef]

18. El Mujtar, V.A.; Gregorutti, V.C.; Eclesia, R.P.; Wingeyer, A.; Lezana, L.; Canavelli, S.B.; Tittonell, P. Assessing Soil Microbial
Biodiversity as Affected by Grazing and Woody Vegetation Cover in a Temperate Savannah. Ann. Appl. Biol. 2021, 179, 231–245.
[CrossRef]

19. Lupatini, M.; Korthals, G.W.; Roesch, L.F.W.; Kuramae, E.E. Long-Term Farming Systems Modulate Multi-Trophic Responses. Sci.
Total Environ. 2019, 646, 480–490. [CrossRef] [PubMed]

20. Marsden, C.; Martin-Chave, A.; Cortet, J.; Hedde, M.; Capowiez, Y. How Agroforestry Systems Influence Soil Fauna and Their
Functions—A Review. Plant Soil 2020, 453, 29–44. [CrossRef]

21. Romdhane, S.; Spor, A.; Banerjee, S.; Breuil, M.C.; Bru, D.; Chabbi, A.; Hallin, S.; van der Heijden, M.G.A.; Saghai, A.; Philippot, L.
Land-Use Intensification Differentially Affects Bacterial, Fungal and Protist Communities and Decreases Microbiome Network
Complexity. Environ. Microbiomes 2022, 17, 1. [CrossRef] [PubMed]

22. Singh, J.; Schädler, M.; Demetrio, W.; Brown, G.G.; Eisenhauer, N. Climate Change Effects on Earthworms—A Review. Soil Org.
2019, 91, 114–138. [CrossRef]

23. Yang, T.; Lupwayi, N.; Marc, S.A.; Siddique, K.H.M.; Bainard, L.D. Anthropogenic Drivers of Soil Microbial Communities and
Impacts on Soil Biological Functions in Agroecosystems. Glob. Ecol. Conserv. 2021, 27, e01521. [CrossRef]

24. Zulu, S.G.; Motsa, N.M.; Sithole, N.J.; Magwaza, L.S.; Ncama, K. Soil Macrofauna Abundance and Taxonomic Richness under
Long-Term No-Till Conservation Agriculture in a Semi-Arid Environment of South Africa. Agronomy 2022, 12, 722. [CrossRef]

25. Baldrian, P.; Merhautová, V.; Cajthaml, T.; Petránková, M.; Šnajdr, J. Small-Scale Distribution of Extracellular Enzymes, Fungal,
and Bacterial Biomass in Quercus Petraea Forest Topsoil. Biol. Fertil. Soils 2010, 46, 717–726. [CrossRef]

26. Nielsen, U.N.; Osler, G.H.R.; Campbell, C.D.; Burslem, D.F.R.P.; van der Wal, R. Predictors of Fine-Scale Spatial Variation in Soil
Mite and Microbe Community Composition Differ between Biotic Groups and Habitats. Pedobiologia 2012, 55, 83–91. [CrossRef]
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