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A B S T R A C T   

Cryptosporidium spp. are enteroparasitic protozoans that cause cryptosporidiosis in newborn calves. Clinical signs 
of the infection are diarrhoea and dehydration leading to decreased productivity and economic losses in cattle 
farms around the world. Additionally, cryptosporidiosis is a relevant zoonotic disease since the ingestion of 
oocysts can be fatal for children under five years of age, the elderly, and/or immunocompromised adults. This 
review aims to integrate existing knowledge on the epidemiological situation of calf cryptosporidiosis and 
associated risk factors in Argentina. In addition, the GP60 subtype diversity of the pathogen was analysed and 
related with the global distribution of corresponding GP60 subtypes. Depending on the study region and applied 
diagnostics, prevalence among calves up to 20 days of age varied between 25.2% and 42.5%, while a prevalence 
of 16.3–25.5% was observed at the age of 1–90 days. So far, molecular studies have determined exclusively 
Cryptosporidium parvum in preweaned calves. In addition, C. parvum infection was reported as the major cause of 
calf diarrhoea, followed by rotavirus A (RVA), while enteropathogens such as coronavirus, Escherichia coli, and 
Salmonella sp. played a negligible role. Calf age of 20 days or less, incidence of diarrhoea, poorly drained soils, 
and large farm size were identified as risk factors for C. parvum-infection in Argentina. A total of nine GP60 
subtypes (IIaAxxG1R1, xx = 16 to 24) were identified, showing a stepwise increase of the trinucleotide motif 
TCA, and including the zoonotic subtypes IIaA16G1R1, IIaA17G1R1, IIaA18G1R1, IIaA19G1R1, and 
IIaA20G1R1. We found that an increase in the A16→A24 trinucleotide repeat was accompanied by a gradual 
decrease in the global distribution of GP60 alleles, strongly suggesting that IIaA16G1R1 represents the pri-
mordial allelic variant of this group. Since identified GP60 alleles have a similar genetic background, we hy-
pothesize that the continuous trinucleotide repeat array has been generated by stepwise repeat expansion of A16. 
The information gathered and integrated in this study contributes to an improved understanding of the epide-
miological characteristics of bovine cryptosporidiosis in and beyond Argentina, which in turn can help to develop 
control strategies for this parasitosis of veterinary and medical relevance.   

1. Overview of bovine cryptosporidiosis 

Infectious diarrhoea of neonatal calves caused by enteropathogens is 
an ongoing concern for dairy production systems worldwide (Foster and 
Smith, 2009; Vermeulen et al., 2017; Tomazic et al., 2018; Chen et al., 
2023). Currently, there are no effective prevention and treatment 
methods, and the costs related to veterinary care of affected animals are 
high. Diarrhoeal infections lead to dehydration, resulting in reduced 
growth rates in calves. Additionally, the outcome can be fatal, and about 
half of the deaths of calves under 8 weeks of age on dairy farms are due 

to diarrhoea, as reported in the USA and South Korea, as well as other 
countries (Sanford and Josephson, 1982; USDA, 2008; Foster and Smith, 
2009; Hur et al., 2013). 

Different pathogens such as rotavirus A (RVA) and coronavirus, the 
bacteria Escherichia coli and Salmonella spp. and the protozoan Crypto-
sporidium spp. cause bovine neonatal diarrhoea (Foster and Smith, 2009; 
Tomazic et al., 2018). Among these, Cryptosporidium spp. are worldwide 
distributed and represent the most frequent pathogenic agent identified 
in calves. For example, in one case, an infection rate of up to 84.0% was 
reported in a dairy herd in Argentina (Modini et al., 2010). 
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Cryptosporidium spp. are parasitic protozoans of the phylum Api-
complexa that infect mammals, reptiles, amphibians, birds, and fish 
(Fayer, 2010). In cattle, four species are principally detected: C. parvum, 
C. bovis, C. ryanae, and C. andersoni (Xiao and Feng, 2008; Xiao, 2010; 
Tomazic et al., 2018). Cryptosporidium parvum is considered the pre-
dominant species in calves up to 2 months of age (Santín et al., 2008; 
Follet et al., 2011; Amer et al., 2013; Tomazic et al., 2018), but, in a few 
cases, infection with C. bovis in this age group has also been reported in 
Sweden, China, Canada, India, and the USA (Feng et al., 2007; Silverlås 
et al., 2010; Budu Amoako et al., 2012; Wang et al., 2017). Notwith-
standing, only C. parvum is considered pathogenic, representing the 
principal causative agent of calf scours, characterised by diverse degrees 
of diarrhoea, anorexia, and abdominal pain, and which may lead to 
death (Nydam et al., 2001; Thompson et al., 2008; Tomazic et al., 2013; 
Del Coco et al., 2014; Cho and Yoon, 2014; Lombardelli et al., 2019; 
Garro et al., 2021; Bertoni et al., 2021). 

Cryptosporidium spp. can also cause moderate to severe self-limiting 
diarrhoea in healthy human individuals. Most cases are caused by the 
zoonotic C. parvum or the anthroponotic C. hominis. However, in 
immunocompromised patients, such as those with AIDS, hemo- 
oncological diseases, and transplantations, the infection is associated 
with chronic and life-threatening diarrhoea. In addition, Cryptospo-
ridium spp. have been shown to be a major cause of mortality in children 
under 2 years of age in sub-Saharan Africa and South Asia, and have 
recently been recognized as an important cause of child malnutrition 
and a health problem for the elderly around the world (Xiao and Feng, 
2008; Checkley et al., 2015; Sow et al., 2016; Yang et al., 2021). Human 
infection with C. parvum subtype IIa is more common in developed 
countries, particularly in Europe, than in developing countries. This may 
be due to the predominance of subtype IIa infection in intensive cattle 
production systems in these countries resulting in massive oocyst 
contamination of the environment (Guo et al., 2022). In contrast, the 
prevalence of C. parvum subtype IIc and C. hominis is higher in devel-
oping countries, because of direct human contact, inadequate hygiene, 
lack of clean water, and poor sanitation facilities (Feng et al., 2007; 
Gerace et al., 2019; Yang et al., 2021). Increasingly, molecular 
PCR-based diagnostics results in an improved identification and docu-
mentation of the infecting species and subtypes (Xiao, 2010; Xiao and 
Feng, 2017; Guy et al., 2021). Few human cases of cryptosporidiosis 
have been reported in Argentina, possibly due to the lack of accurate 
diagnosis (Cerezuela et al., 2017). 

Cryptosporidium parasites have a monoxenic life-cycle with asexual 
and sexual reproduction. The infected animal excretes with its faeces 
sporulated oocysts into the environment. Transmission to a new host 
occurs via the faecal-oral route, either by direct contact with infected 
faeces or indirectly by consuming water or food contaminated with 
oocysts. After ingestion by the host, the oocysts excyst and invade the 
cells of the gastrointestinal tract where they undergo asexual and sexual 
reproduction, during which thin-walled and thick-walled oocysts are 
generated. The former generate sporozoites that autoinfect yet unin-
fected intestinal cells, while the latter are excreted into the environment 
with faeces (Thompson et al., 2008; Bouzid et al., 2013; Tomazic et al., 
2018). 

The evolution of Cryptosporidium spp. has resulted in extremely 
efficient host colonization, parasite proliferation, and dissemination 
strategies. Successive multiplication and autoinfective cycles in the host 
result in a massive amplification of the parasite in the digestive tract, 
ensuring an efficient excretion of a huge number of oocysts into the 
environment. It has been reported that a single calf excretes up to 40 
million oocysts per gram of faeces, corresponding to 600 million oocysts 
per day (Fayer et al., 1998; Zambriski et al., 2013). Moreover, the thick 
oocyst wall allows resisting a wide variety of environmental conditions 
and many disinfectants, including those based on chlorine. Finally, an 
extremely low infective dose ensures dissemination in the host popula-
tion: it has been demonstrated that ingestion of only 17 oocysts allows 
the establishment of infection in calves (Nydam et al., 2001; Messner 

and Berger, 2016). These characteristics ensure the completion of the 
life-cycle and parasite survival. However, they also result in massive 
oocyst contamination of the environment, especially near livestock 
production facilities (Thompson et al., 2008; Wyatt et al., 2010). 

Among several available methods for the detection of Cryptospo-
ridium oocysts in faeces, the most widespread is the microscopic exam-
ination of acid-fast stained oocysts in faecal smears using methods such 
as Kinyoun and modified Ziehl-Neelsen. These methods take advantage 
of the presence of fatty acids in the oocyst wall allowing to clearly spot 
Cryptosporidium oocysts as small pink spheres against a blue background 
(Henriksen and Pohlenz, 1981; Casemore et al., 1985; Petry, 2004; 
Jenkins et al., 2010; Aldeyarbi and Karanis, 2016; Tomazic et al., 2018; 
Wang et al., 2022). Noteworthy, a less common, but faster, more spe-
cific, and more sensitive method is the modified Heine negative staining 
(Potters and Van Esbroeck, 2010; Khanna et al., 2014). Although rapid, 
staining methods are less sensitive than molecular diagnostics and do 
not allow species differentiation (Santin, 2020). 

In order to identify the infecting Cryptosporidium species, demon-
stration of species-specific DNA in stool or environmental samples is 
required (Chalmers and Katzer, 2013; Santin, 2020). Current molecular 
methods are mainly based on the detection of species-specific poly-
morphisms in the variable region of the 18S small subunit ribosomal 
RNA (18S rRNA) gene. Differentiation between species is made possible 
by length analysis of the amplicon after species-specific PCR or by PCR 
followed by enzymatic digestion of the amplicon (PCR-RFLP) (Xiao, 
2010; Thomson et al., 2016; Xiao and Feng, 2017; Santin, 2020). In 
addition, subtyping of C. parvum can be carried out by PCR amplification 
and sequencing of the gene encoding the polymorphic 60 kDa glyco-
protein (GP60) (Xiao, 2010). Notably, some C. parvum GP60 subtypes 
have been associated with zoonosis (Thompson et al., 2008; Xiao, 2010). 
Other genotyping methods have been developed, but their complexity 
limits their use to specific research questions (Widmer et al., 2004; Díaz 
et al., 2012). Analysis of the molecular epidemiology of the subtypes of 
Cryptosporidium allows to study the transmission dynamics of the 
infection, the sources of contamination, and the zoonotic risk, and is 
therefore of great importance both for the surveillance of the agricul-
tural production system and for public health. 

At present, there are neither vaccines nor efficient chemotherapeu-
tics available for the control of bovine cryptosporidiosis (Tomazic et al., 
2018; Santin, 2020; Florin-Christensen et al., 2021). Therefore, 
increased knowledge of this parasitosis, its prevalence and associated 
risk factors is required in order to develop and improve current strate-
gies to control the spread of the parasite. This review aims to analyse and 
integrate different aspects of the prevalence, associated risk factors, and 
molecular epidemiology of Cryptosporidium spp. infection in cattle in 
Argentina. 

2. Prevalence of Cryptosporidium spp. infection of dairy calves 

The presence of Cryptosporidium oocysts in calves with clinical signs 
of diarrhoea in dairy herds was first reported in several Argentine 
provinces by Bellinzoni et al. (1990) who observed a very high infection 
rate of 29.6% in dairy calves less than 30 days of age. However, this 
value needs to be interpreted with caution. On one hand, only calves 
with clinical signs were included in this study, and on the other hand, 
faecal samples were not concentrated before microscopic examination. 
Thus, although the observed infection rates indicate that Cryptospo-
ridium infection is important and widespread in calves in Argentina, the 
reported values represent the infection rate of diarrhoeic calves and 
should therefore not be considered as prevalence (Bellinzoni et al., 
1990) (Table 1). 

In more recent studies, the prevalence of Cryptosporidium spp. 
infection has been determined in five extensive and well-projected 
epidemiological regional studies including a large number of animals 
sampled from many dairy farms (n ≤ 19 to 54 dairy herds) in the 
provinces of Buenos Aires, Córdoba, and Salta (Garro et al., 2016, 2021; 
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Tiranti et al., 2011; Lombardelli et al., 2019; Bertoni et al., 2021) (Fig. 1, 
Table 1). In two independent studies carried out in different extended 
regions of the Buenos Aires Province, a similar prevalence of 26.6% and 
29.8% was found in calves ≤ 20 days of age. However, the first value 

may represent an underestimation since oocyst concentration was not 
applied (Table 1; Garro et al., 2016, 2021). Interestingly, a similar 
infection rate of 24.0% oocyst-excreting calves from a single dairy herd 
has been also reported by Del Coco et al. (2008) (Table 1). In the same 

Table 1 
Epidemiology of Cryptosporidium infection in dairy calves in Argentina.  

Province Farms 
(n) 

Samples 
(n) 

Prevalence (%)a Sample processing 
(Concentration method)b 

Microscopic examination 
(Staining method)b 

Reference 

Calf-level Herd- 
level 

Age ≤90 
days 

Age ≤20 
days  

Buenos Aires 42 908 18.5 29.8 73.8 Formalin-ether1 Kinyoun4 Garro et al. (2021) c 

27 552 16.3 26.6 98.0 None Kinyoun4,6 Garro et al. (2016) 
1 280 17.0 24.0 – Water/ether3 Modified Ziehl-Neelsen5 Del Coco et al. 

(2008) 
Córdoba 54 1073 25.5 34.0 89.0 Formalin-ether1 Modified Ziehl-Neelsen4 Lombardelli et al. 

(2019) c 

43 620 19.4 25.2 79.0 Formalin-ether1 Modified Ziehl-Neelsen4 Tiranti et al. (2011) 
Santa Fe 8 135 19.9 46.2 – Sheather2 Kinyoun4 Aguirre et al. (2014) 

1 106 84.0 83.0 – Sheather2 Kinyoun4 Modini et al. (2010) 
3 162 24.0 43.0 100 Sheather2 Kinyoun4 Modini et al. (2011) 

Salta 19 488 18.0 42.5 84.2 Water4 Modified Ziehl-Neelsen4 Bertoni et al. (2021) 
Five province 

studyd 
33 239 – 29.6 69.7 None Bronsdon7 Bellinzoni et al. 

(1990)  

a Studies that estimated the true prevalence across a large region including at least 19 herds are shown in normal font type, while studies that estimated the infection 
rate based on one to eight farms are displayed in italics. 

b The references for the concentration and staining methods applied are: 1Young et al. (1979); 2Garcia (2007); 3Bukhari and Smith (1995); 4Henriksen and Pohlenz 
(1981); 5Casemore et al. (1985); 6Elsafi et al. (2014); 7Bronsdon (1984). 

c In these studies, the species C. parvum was identified in a subset of oocyst-positive samples using PCR-RFLP. 
d Exclusively faecal specimens from calves under 30 days of age with clinical signs of diarrhea were sampled from farms situated in the Province of Buenos Aires, 

Córdoba, Santa Fe, Entre Rios, and La Pampa. 

Fig. 1. Prevalence of oocyst-excreting calves younger than 2 years of age sampled from herds in different geographical regions in Argentina. Circle size approxi-
mately corresponds to the number of sampled herds and the size of the studied region. Values and references in italics are estimates based on single or few herds and 
represent infection rates of the individual farms studied (Table 1). 
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age group of calves, two studies from the same regions of the Córdoba 
Province reported a prevalence of 25.2% and 34.0% (Tiranti et al., 2011; 
Lombardelli et al., 2019). Since the same diagnostic methodology was 
applied, the difference demonstrates an important increase in the 
prevalence during this time. Since a similar number of samples were 
taken throughout the year in both studies, the observed differences are 
not due to seasonality. Noteworthy, between 2011 and 2019 production 
had been substantially intensified in this region, and animal density in 
breeding sectors had doubled possibly resulting in increased contact of 
animals facilitating the spread of the parasite (J. Lombardelli, pers. 
comun.). Large farm size and an increased stocking density have been 
reported as significant risk factors for Cryptosporidium infection (see 
Section 4) (Guo et al., 2022; Chen et al., 2023). Interestingly, a consid-
erably higher prevalence of 42.5% in calves ≤ 20 days of age was re-
ported from Salta Province. However, the elevated value may be due to 
an increased concentration procedure during processing of faecal sam-
ples prior to microscopic examination, resulting in a higher prevalence 
value in this region (Table 1; Bertoni et al., 2021). Except for one study 
from Córdoba, where 25.5% of calves under 90 days of age were iden-
tified to excrete oocysts, a considerably lower prevalence, ranging be-
tween 16.3% and 19.4%, was observed in this age group in studies 
reported from Córdoba, Buenos Aires, and Salta (Tiranti et al., 2011; 
Garro et al., 2016, 2021; Lombardelli et al., 2019; Bertoni et al., 2021). 

Other epidemiological investigations carried out in Santa Fe Prov-
ince included a considerably lower number of calves sampled from a 
single or up to eight dairy herds (Table 1). In addition, these studies stay 
apart because of the use of the highly sensitive Sheatherʼs concentration 
method, which may explain in part the considerably higher infection 
rates of 43% and 46.2% observed in calves under 20 days of age, as 
reported by Modini et al. (2011) and Aguirre et al. (2014), respectively 
(Table 1). Furthermore, an unusually high rate of infection of 83.0% in 
calves under 15 days of age, and of 85% in calves under 60 days of age 
were reported from a single farm that artificially raised dairy calves from 
other farms. This procedure is expected to significantly increase the 
infection pressure on susceptible animals by introducing, accumulating, 
and contaminating oocysts. Finally, depending on the region, the prev-
alence of Cryptosporidium infection in young calves ≤ 20 days of age in 
Argentina was found to range from 25.2% to 42.5%, being lower than 
that reported from Galicia, Spain (47.9%), in a similar range as those 
reported from Latvia (33.8%), North-West England (28%) and The 
Netherlands (27.8%), but higher than that reported from New Zealand 
(15.8%). All of the referenced studies used direct microscopic exami-
nation of oocysts after staining or immunofluorescence, and although 
sensitivities may vary to some extent, the reported prevalences should 
be comparable with a reasonable degree of caution. This comparison 
shows that the prevalence rates reported from Argentina are significant 
and place this country in the upper middle range of the countries sur-
veyed (Castro-Hermida et al., 2002; Brook et al., 2008; Bartels et al., 
2010; Al Mawly et al., 2015; Deksne et al., 2022; Guo et al., 2022). 

3. Diarrhoea as a clinical manifestation of Cryptosporidium spp. 
infection 

Cryptosporidium infection is associated with diarrhoea as a clinical 
manifestation in calves less than 21 days of age (OR = 5.7, Garro et al., 
2021) or 60 days of age (OR = 3, Bertoni et al., 2021; OR = 5.5, Garro 
et al., 2016), as reported in large-scale studies involving more than 19 
herds. Comparable values have been reported for calves of the same age 
groups when single or few farms were sampled and studied (RR = 5.9, 
Aguirre et al., 2014; RR = 2.9, Modini et al., 2011) (Table 2). Garro et al. 
(2021) showed that, in addition of Cryptosporidium (OR = 5.7, P <
0.0001), RVA infection (OR = 2.5, P < 0.05) was a significant risk factor 
for diarrhoea in calves ≤ 20 days of age in the Province of Buenos Aires. 
However, based on these data, it can be concluded that Cryptosporidium 
infection is clearly the predominant causative factor of diarrhoea in the 
study region, considering the 2-fold higher prevalence of Cryptospo-
ridium infection (29.8% vs an infection rate of 12.4% for RVA) and an 
approximately 2-fold higher OR (5.7 vs an OR of 2.5 for RVA) for diar-
rhoea. Both values translate into an approximately 4-fold greater impact 
of Cryptosporidium on the prevalence of diarrhoea in newborn calves. 
Interestingly, mixed infections with Cryptosporidium and RVA increased 
substantially the risk of developing diarrhoea (Table 2; OR = 9.2, Garro 
et al., 2021), yet the low number of animals with co-infections observed 
suggested that this factor contributes only marginally to the overall 
prevalence of calf diarrhoea (Garro et al., 2021). Noteworthy, the low 
incidence of Cryptosporidium and RVA co-infection is due to the condi-
tional probability of its occurrence, highlighting that Cryptospor-
idium-infected calves do not show an increased susceptibility to RVA 
infection and vice versa. 

4. Risk factors for Cryptosporidium spp. infection of dairy calves 

Cryptospordium infection was found to be highly associated with an 
age of ≤ 21 days (Table 3; OR = 7.9, Garro et al., 2016; OR = 5.6, Garro 
et al., 2021; OR = 4.4, Bertoni et al., 2021) or under 15 days of age (RR 
= 3.8, Tiranti et al., 2011). Somewhat decreased values were reported 
when lower numbers of animals and fewer farms were sampled (RR =
3.6, Aguirre et al., 2014). The findings are in agreement with research 
carried out in Spain, Mexico and Canada where a higher risk of 
C. parvum infection was reported in calves in the first two weeks of life 
compared to age groups from 16 to 60 days (de la Fuente et al., 1999; 
Maldonado-Camargo et al., 1998; Wade et al., 2000; Maddox-Hyttel 
et al., 2006; Trotz-Williams et al., 2007; Brook et al., 2008; Cardoso 
et al., 2008; Santín et al., 2008; Izzo et al., 2011). The high prevalence of 
oocyst excretion in calves ≤ 20 days of age strongly suggests that this is 
the most relevant age group to establish controls to prevent contami-
nation of the environment with C. parvum, such as, for example, sepa-
ration of infected calves from the herd (Xiao et al., 2007). 

Interestingly, Bertoni et al. (2021) found a slightly increased though 
highly significant risk of Cryptosporidium infection in farms with more 
than 300 milking cows (Table 3; OR = 1.2, P < 0.005). Possibly, lower 
sanitary conditions in larger farms with more intensive production 
contribute to the observed higher infection rate compared to farms of 

Table 2 
Diarrhoea as a clinical manifestation of Cryptosporidium spp. infection.  

Independent variable Dependent variable Levelsa OR RR 95% CI P-value Reference 

Cryptosporidium spp. Diarrhoea ≤ 20 days 5.7 – 3.3–9.9 <0.001 Garro et al. (2021) 
1–60 days 3 – 1.8–5.0 <0.001 Bertoni et al. (2021) 
1–60 days 5.5 – 2.6–11.6 <0.0001 Garro et al. (2016) 
≤ 21 days – 5.9 1.3–27.3 <0.01 Aguirre et al. (2014) 
≤ 15 days – 2.9 1.4–5.6 – Modini et al. (2011) 

Cryptosporidium + Rotavirus Diarrhoea ≤ 20 days 9.2 – 2.8–29.0 0.001 Garro et al. (2021) 

Abbreviations: OR, odds ratio; RR, relative risk; CI, confidence interval. 
a Values obtained in studies of three and eight herds are given in italics; values based on regional studies that involved at least 19 or up to 42 herds are given in 

normal font type (see Table 1). 
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medium or smaller size (Bertoni et al., 2021). Besides, the heavy envi-
ronmental contamination generated by such concentrated animal 
feeding operations (CAFO), they promote propagation and subsequent 
spillover effects of the pathogen into the environment and then to other 
farm animals and humans. For example, it has been observed that the 
same C. parvum subtypes found in cattle subjected to intensive farming 
practices typical for developed countries are identified in human pa-
tients with cryptosporidiosis. On the other hand, these subtypes are not 
identified in bovines and in human patients in developing countries that 
typically lack CAFOs (Guo et al., 2022). 

Finally, Tiranti et al. (2011) analysed the prevalence of Cryptospo-
ridium infection in regions of poorly and well-drained soils. They found 
an almost 3-fold increase of the risk of Cryptosporidium infection as a 
consequence of poorly drained soils (Table 3; RR = 2.9, Tiranti et al., 
2011). These results are of great importance as they demonstrate the 
relevance of the rearing environment for C. parvum infection. Note-
worthy, Castro-Hermida et al. (2002) observed that the risk of infection 
was significantly higher in pens with straw soils rather than cement 
floors. The latter can be easily cleaned with water and disinfected as 
opposed to straw soils, which need to be periodically changed which 
complicates disinfection. 

5. Molecular epidemiology of Cryptosporidium species and 
subtypes 

Molecular characterisation of C. parvum subtypes is important to 
determine associated risk factors and to establish possible infection 
sources and routes of transmission (Xiao et al., 1999; Xiao, 2010). To 
date, all oocyst samples isolated in Argentina (n = 393) have been 
identified exclusively as C. parvum by PCR-RFLP of the 18S rRNA gene 
(Tomazic et al., 2013; Del Coco et al., 2014; Lombardelli et al., 2019; 
Garro et al., 2021). Thus, it is reasonable to assume that prevalence 
values in the study regions given in Table 1 correspond to the species 
C. parvum. In contrast, in the neighbouring country Brazil, also the 
presence of C. bovis, C. ryanae, and C. andersoni has been reported in 
calves under 2 months of age as determined by sequencing of 18S rRNA 
amplicons (Meireles et al., 2011; Toledo et al., 2017). 

Furthermore, all 168 GP60 subtypes analysed so far were found to 
belong to the family IIa (Tomazic et al., 2013; Del Coco et al., 2014; 
Lombardelli et al., 2019) (Table 4). The most frequent subtype identified 
was IIaA20G1R1 (n = 60). Other GP60 subtypes that were frequent and 

evenly distributed in the three geographical study regions were 
IIaA18G1R1 (n = 26), IIaA21G1R1 (n = 27), and IIaA22G1R1 (n = 27) 
(Tomazic et al., 2013; Del Coco et al., 2014; Lombardelli et al., 2019). 
These four subtypes were also detected, although with relatively low 
frequency, in neonatal calves from many different countries from 
western and eastern Europe, South America (Uruguay and Brazil), and 
Middle East (Iraq) (Fig. 2, Supplementary Tables S1 and S2). 

Less common subtypes identified in Argentina are IIaA19G1R1 (n =
1), followed by IIaA24G1R1 (n = 2), and IIaA16G1R1 (n = 4). Note-
worthy, variants IIaA23G1R1 (n = 11) and IIaA24G1R1 (n = 2) have 
been first identified in calves in Argentina but meanwhile the former has 
been also identified in Sweden and Uruguay, while the latter has been 
recently identified in Germany (Fig. 2, Supplementary Tables S1 and S2) 
(Tomazic et al., 2013; Lombardelli et al., 2019). The worldwide most 
widespread subtypes IIaA16G1R1, IIaA17G1R1 (n = 10), and 
IIaA19G1R1 (n = 1), were reported from many countries of western and 
eastern Europe and from South America (Argentina and Uruguay). In 
addition, the subtype IIaA16G1R1 was found in North America (Can-
ada), Middle East, Africa, and Australia, whereas IIaA17G1R1 was 
identified in Middle East and Africa. Finally, IIaA19G1R1 was also 
distributed in North America and Asia (Fig. 2, Supplementary Table S1). 

Statistical analysis applying the Kruskal-Wallis test showed that the 
number of GP60 subtypes IIaA21G1R1 and IIaA20G1R1 identified in 
Argentina is significantly higher than that of subtypes IIaA16G1R1, 
IIaA17G1R1, IIaA19G1R1, and IIaA24G1R1 (P < 0.05) (Supplementary 
Fig. S1). No other statistically significant relations could be demon-
strated (Supplementary Data S1). 

Association studies of the severity of calf cryptosporidiosis with 
GP60 variants are scarce. In two recent studies, no association between 
the severity of diarrhoea and a particular subtype could be observed; 
however, the sample number was relatively low, and subtypes were not 
found to be equally distributed but clustered between farms (Del Coco 
et al., 2014; Lombardelli et al., 2019). 

Remarkably, all identified GP60 alleles exhibited a nonsynonymous 
nucleotide substitution (A → G) in a highly conserved region resulting in 
an amino acid exchange, from Asp to Gly; an observation that suggests a 
founder effect (Tomazic et al., 2013). Furthermore, the 5’ terminus of 
the gene contains a polymorphic microsatellite region composed of 
16–24 trinucleotide repeats “TCA” (A16 to A24) and a single copy of 
“TCG” (G1) and “ACATCA” (R1). This observation suggests that 
C. parvum varieties isolated in Argentina evolved from an introduced 

Table 3 
Risk factors associated with Cryptosporidium spp. infection.  

Independent variable Dependent variable Levelsa OR RR 95% CI P-value Reference 

Age Cryptosporidium ≤ 20 days 5.6 – 3.2–9.5 <0.001 Garro et al. (2021) 
< 20 days 4.4 – 2.7–7.2 <0.001 Bertoni et al. (2021) 
≤ 20 days 7.9 – 3.7–17.0 <0.0001 Garro et al. (2016) 
≤ 15 days – 3.8 2.3–6.3 – Tiranti et al. (2011) 
≤ 21 days – 3.6 2.6–5.0 <0.01 Aguirre et al. (2014) 

Farm size (n > 300) Cryptosporidium 1–60 days 1.2 – 0.5–2.7 0.005 Bertoni et al. (2021) 
Poorly drained soils High prevalence herd 1–50 days – 2.9 – 0.001 Tiranti et al. (2011) 

Abbreviations: OR, odds ratio; RR, relative risk; CI, confidence interval. 
a Values obtained in studies of eight herds are given in italics; values based on regional studies that involved at least 19 or up to 43 herds are given in normal font type 

(Table 1). 

Table 4 
Cryptosporidium parvum GP60 subtypes identified in calves from Argentina.  

Province IIaXXG1R1 (xx = A16-A21) No. of subtypes analysed 

A16 A17 A18 A19 A20 A21 A22 A23 A24 

Buenos Aires 42 101 132 12 311,2 191,2 181,2 51,2  101 
Santa Fe     11 31 31 61  13 
Córdoba   131,3  281,3 51,3 63  23 54 
Total 4 10 26 1 60 27 27 11 2 168 

Note: GP60 subtypes have been reported in 1Tomazic et al. (2013) (n = 46), 2Del Coco et al. (2014) (n = 75); 3Lombardelli et al. (2019) (n = 47). 
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ancestor of the GP60 family containing repeat motives A16, G1, and R1, 
in which subsequently the TCA (16×) trinucleotide repeats (=A16) 
expanded in a stepwise manner to result in A24 repeats (Fig. 2, Sup-
plementary Table S2). In this context, it must be noted that while a 
single nonsynonymous nucleotide mutation in a conserved region is a 
very rare singular event, microsatellite expansions belong to the most 
frequent type of genomic mutations observed (Li et al., 2002; Oliveira 
et al., 2006). 

In addition to the above scenario, it must also be considered that 
worldwide livestock trade contributes to the global distribution of GP60 
subtypes. To get an insight into the origin and worldwide distribution of 
the subtype family IIaAxxG1R1” (xx = 16–24) identified in Argentina, 
an exhaustive literature search was carried out. Surprisingly, we found 
that the greater the number of countries in which a subtype was iden-
tified, the lower the number of its “TCA” repeats (Fig. 2). Thus, the 
IIaA16G1R1 subtype is most widely distributed and was found in calves 
(n = 13), in humans (n = 4), and in calves and humans (n = 3) in 
altogether 20 different countries (Fig. 2, Supplementary Tables S1 and 
S2). In addition, when considering the allele subtype family IIaAxxG1R1 
(xx = 16-24), this subtype has been reported to have the highest global 
prevalence of 6.4% (Chen et al., 2023). Both these findings strongly 
suggest that it represents the primordial subtype of this group of alleles. 
In contrast, the variant IIaA24G1R1, reported in only two countries from 
calves (n = 2), has been most likely generated much more recently. An 
exception from this finding was IIaA22G1R1 (n = 7), which shows a 
relatively wider geographical distribution than the subtype IIaA21G1R1 
(n = 4) (Fig. 2, Supplementary Tables S1 and S2). 

Further analysis of the distribution of the IIaAxxG1R1 (xx = 16–24) 
allele family in geographical world regions was carried out (Fig. 2). We 
found that all subtypes identified in Argentina and some neighbouring 
South American countries (Uruguay and Brazil) were predominantly 
identified from many countries of western and eastern Europe but also 
from other world regions such as Africa, North America, Middle East, 
and Asia. This distribution pattern is largely consistent with that of the 
currently known IIa subtypes as reported by Chen et al. (2023). 

Recently, the GP60 subtypes IIaA15G2R1 (32.4%), IIaA18G3R1 

(11.8%), and IIaA13G2R1 (8.2%) have been reported to be the globally 
most frequent (Chen et al., 2023). They display an increased copy 
number of the G repeat, which distinguishes them from the GP60 allele 
lineage IIaAxxG1R1. Interestingly subtypes with G extensions have not 
yet been identified in Argentina, which raises the question of how this 
finding may be interpreted. Since such consideration is related to the 
occurrence of random events such as genetic drift, it is by its very nature 
difficult to answer. However, it may be considered that an expansion of 
the A16 trinucleotide repeat should be at least 16 times more likely (e.g. 
by polymerase slippage) than that of the G nucleotide triplet since the A 
triplet is 16 times more frequent. 

Interestingly, only variants IIaA16G1R1, IIaA17G1R1, IIaA18G1R1, 
and IIaA22G1R1 were reported in calves and humans within a given 
country, while the remaining subtypes were identified either in calves or 
humans (IIaA19G1R1 and IIaA20G1R1) or only in calves (IIaA21G1R1, 
IIaA23G1R1, and IIaA24G1R1) (Supplementary Tables S1 and S2). The 
zoonotic subtypes IIaA16G1R1, IIaA17G1R1, IIaA18G1R1, IIaA19G1R1, 
IIaA20G1R1, and IIaA22G1R1 identified in calves in Argentina repre-
sent 45.8% (77 out of 168) of the total of subtypes analysed, which 
suggests a high risk of human infection. Importantly, these subtypes 
have been also identified in human patients with diarrhoea in several 
countries around the world such as Australia, East Africa (Ethiopia), 
Europe (Great Britain, Ireland, Norway, Scotland, Spain, Sweden, UK), 
Middle East (Iraq), and North America (USA, Canada) (Fig. 2; Supple-
mentary Table S1). 

Noteworthy, subtypes IIaA16G1R1 and IIaA17G1R1 have been 
identified also by other authors in neonatal calves but were additionally 
found in the faecal material of sheep, pigs, dogs, lambs, horses and 
donkeys (Kvác et al., 2009; Smith et al., 2010; Imre et al., 2013; Ramo 
et al., 2014; Laatamna et al., 2015; Hijjawi et al., 2016; Kaupke et al., 
2017; Rosanowski et al., 2018; Essid et al., 2018). The fact that they 
have been isolated from a wide variety of domestic animal species 
suggests that these may represent important reservoir hosts and a source 
of oocysts, which may consequently re-infect neonatal calves. Both 
subtypes are considered to be of zoonotic importance and were isolated 
on several occasions from diarrhoeic human patients (Thompson et al., 

Fig. 2. GP60 subtypes IIaAxxG1R1 (xx = 16 to 24, the figures correspond to the number of repeats of the trinucleotide GTA) reported from Argentina and their global 
geographical distribution. Colours indicate countries or geographical regions where a defined subtype was found. Argentina (blue); other South American countries 
(light blue), western Europe (green), eastern Europe (light green), North America (purple), Africa (orange), Middle East (pink), Asia (grey), Australia (red). 
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2008). The reason for the ability of these particular C. parvum subtypes 
to infect various animal species requires further investigation and may 
indicate the presence of yet unrecognized species or a cryptic species 
complex. 

6. Conclusions 

Cryptosporidiosis of calves constitutes an economic burden for the 
cattle industry and is a concern for public health. The aim of this review 
was to analyse research data from Argentina to allow their comparison 
and integration with those reported from other countries. A high prev-
alence of dairy calf cryptosporidiosis of 25.2–42.5% in the age group of 
≤ 20 days, and a prevalence of 16.3–25.5% in the age group of under 90 
days was observed in the main dairy regions. These prevalence rates are 
significant, placing Argentina in the upper middle range of surveyed 
countries. In all cases where species identification was performed (n =
393), only C. parvum was identified in calves less than 90 days of age. 
Comparisons of different enteropathogens showed that the main risk 
factor for calf diarrhoea was the infection with C. parvum, while RVA 
was found to be of secondary importance. Other risk factors for 
C. parvum infections were a calf age under 20 days, a significantly 
increased prevalence of calf cryptosporidiosis in areas with poorly 
drained soils, a large size of herds (> 300 cattle heads), and co-infection 
of C. parvum with RVA; though mixed infections are rare and do there-
fore not account for an increased prevalence of calf diarrhoea. Surpris-
ingly, the seamless identification of GP60 subtypes from IIaA16G1R1 to 
IIaA24G1R1 suggests a stepwise expansion of the trinucleotide repeat 
A16 to A24 within this region. This is supported by the presence of a 
non-synonymous nucleotide exchange in the conserved region of all 
identified GP60 subtypes. This notion is furthermore supported by our 
finding that the lower the repeat number (A16) the wider the worldwide 
geographical distribution of the respective GP60 subtype. Finally, nearly 
half of the subtypes identified in calves in Argentina (77 out of 168, 
corresponding to 45.8%) represented subtypes known to be zoonotic 
(IIaA16G1R1 to IIaA20G1R1, and IIaA22G1R1), suggesting a high risk 
of human infection. Our findings contribute to a deeper understanding 
and a more profound insight of calf cryptosporidiosis in Argentina and 
other regions worldwide. 
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Castro-Hermida, J.A., González-Losada, Y.A., Ares-Mazás, E., 2002. Prevalence of and 
risk factors involved in the spread of neonatal bovine cryptosporidiosis in Galicia 
(NW Spain). Vet. Parasitol. 106, 1–10. https://doi.org/10.1016/s0304-4017(02) 
00036-5. 

Cerezuela, F., Miniti, E., Ocampo, M., Loustanau, M., Barrera, E., Ojeda, P., et al., 2017. 
Cryptosporidium sp. en la Provincia de La Rioja, Argentina. Niños asintomático con 
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