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Famaillá, Tucumán, Argentina, 7Estación Experimental Agropecuaria (EEA) Ascasubi, Instituto Nacional
de Tecnologı́a Agropecuaria (INTA), Hilario Ascasubi, Buenos Aires, Argentina, 8Instituto de Genética,
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Africanized Apismellifera colonies with promising characteristics for beekeeping have

been detected in northern Argentina (subtropical climate) and are considered of

interest for breeding programs. Integral evaluation of this feral material revealed high

colony strength and resistance/tolerance to brood diseases. However, these

Africanized honeybees (AHB) also showed variable negative behavioral traits for

beekeeping, such as defensiveness, tendency to swarm and avoidance behavior.

We developed a protocol for the selection of AHB stocks based on defensive behavior

and characterized contrasting colonies for this trait using NGS technologies. For this

purpose, population and behavioral parameters were surveyed throughout a

beekeeping season in nine daughter colonies obtained from a mother colony (A1

mitochondrial haplotype) with valuable characteristics (tolerance to the mite Varroa

destructor, high colony strength and low defensiveness). A Defensive Behavior Index

was developed and tested in the colonies under study. Mother and two daughter

colonies displaying contrasting defensive behavior were analyzed by ddRADseq.

High-quality DNA samples were obtained from 16 workers of each colony. Six

pooled samples, including two replicates of each of the three colonies, were

processed. A total of 12,971 SNPs were detected against the reference genome of

A. mellifera, 142 of which showed significant differences between colonies. We

detected SNPs in coding regions, lncRNA, miRNA, rRNA, tRNA, among others.

From the original data set, we also identified 647 SNPs located in protein-coding
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/articles/10.3389/finsc.2023.1175760/full
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/finsc.2023.1175760&domain=pdf&date_stamp=2023-08-31
mailto:bianchi.eliana@inta.gob.ar
https://doi.org/10.3389/finsc.2023.1175760
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/insect-science#editorial-board
https://www.frontiersin.org/journals/insect-science#editorial-board
https://doi.org/10.3389/finsc.2023.1175760
https://www.frontiersin.org/journals/insect-science


Bianchi et al. 10.3389/finsc.2023.1175760

Frontiers in Insect Science
regions, 128 of which are related to 21 genes previously associated with defensive

behavior, such as dop3 and dopR2, CaMKII and ADAR, obp9 and obp10, and

members of the 5-HT family. We discuss the obtained results by considering the

influence of polyandry and paternal lineages on the defensive behavior in AHB and

provide baseline information to use this innovative molecular approach,

ddRADseq, to assist in the selection and evaluation of honey bee stocks

showing low defensive behavior for commercial uses.
KEYWORDS

Africanized honey bee, defensiveness, next generation sequencing techniques,
ddRADseq, breeding program
1 Introduction

During the16th century, the European honey bee, Apis mellifera

L. (Hymenoptera: Apidae), was introduced into America for

beekeeping purposes (1–3). The subspecies brought to the

continent by European settlers were Apis mellifera. mellifera L, A.

m. ligustica Spinola, A. m. carnica Pollmann, A. m. caucasica

Pollmann, A. m. lamarckii Cockerell, A. m. syriaca Skorikov, A.

m. cypria Pollmann, and A. m. intermissa Buttel-Reepen (2, 3).

These subspecies have continued to be imported ever since, through

the commercialization of fertilized queens and queen cells (4, 5). In

turn, the first recorded entry of honey bees of African origin, A. m.

scutellata Lepeletier, took place in 1956 (6) in the context of a

genetic breeding program. Despite the controlled conditions of the

program, an accidental escape of these African bees, favored by

their colonization capacity and genetic dominance, dispersed in an

uncontrolled manner throughout South America by crossing with

honey bee populations of European origin, initiating a hybridization

process known as “Africanization’’ (7–10). In Argentina,

populations derived from African subspecies (A. m. scutellata and

A. m. intermissa) and from the Iberian Peninsula (A. m. iberiensis

Engel) have been registered and are mainly distributed in the

northern region of the country. Particularly, the presence of the

last two subspecies of A. mellifera suggests a second source of A and

M lineages, respectively (11–13).

The Africanization process marked a milestone in American

beekeeping since Africanized honey bee (AHB) colonies retained

many advantageous productive traits of their African ancestors,

such as active resistance to brood diseases and natural tolerance to

pathogens and parasites (14–16), as well as high genetic variability,

which favored the emergence of climate-adapted ecotypes (5, 9, 17,

18). However, they also exhibited disadvantageous characteristics

such as high defensiveness and swarming tendency (19–23). In

addition, AHB exhibited a lower productivity (weight of honey

produced) compared with EHB (24, 25).

Given the threat of global warming and the growing need for

food equity, AHB colonies are regarded as promising genetic

resources for beekeeping, due to their shorter breeding cycle,

compared to European honey bees (26, 27), and natural
02
adaptation to subtropical and tropical climates (10, 28, 29).

Nonetheless, as approximately 3% of the human population is

allergic to honey bee venom (30, 31), the defensive behavior

displayed by workers is a topic of interest not only for beekeeping

but also for public health (32). Defensive behavior in honey bee

colonies is defined as the individual and collective reactions of

worker bees in response to external disturbances to the hive (33). It

involves different actions such as persuasion (rapid flight, high-

pitched buzzing, chasing, hitting, and biting), alarm pheromone

release (34–36), and stinging as a direct attack action on the threat

(37). This behavior has been described as a highly heritable trait,

with genetic dominance and paternal effect (29, 38, 39). The level of

defense response of a honey bee colony is related to its sensitivity to

the alarm pheromone, visual stimuli, and propensity to sting, run or

fly (40), and it requires a sophisticated mechanism of sensory

integration, involving olfactory, visual and mechanosensory

signals (33, 38). Due to the interest in defensive behavior, genetic

studies have been carried out using molecular markers (40, 41), and

expression analyses of candidate genes have allowed the

identification of molecular pathways associated with the

expression of this behavior (42, 43). Age, genetics and adaptation

to the environment have been proposed as the main factors

associated with defensive behavior in honey bees (44–47). In

addition, Gibson et al. (48) have evidenced the existence of

asymmetric allelic expression patterns in hybrid honey bees

associated with maternal biases and epigenetic regulation (38, 49,

50), which would act as regulators of aggression expression.

Beekeeping is an important economic activity in Argentina, as

this country is the fourth world producer and the third exporter of

high-quality honeys (51). This commercial activity is mostly

performed by small and medium-sized Argentine producers (52,

53). In support of beekeepers, Argentina has implemented honey

bee breeding programs to select and multiply bee stocks of

European origin with desirable characteristics of production and

behavior (54). Particularly, the MeGA program (PROAPI-INTA)

focuses on the selection and conservation of local stocks (mostly

established in a temperate climate) with demonstrated tolerance or

active resistance to mites and brood diseases, low defensiveness, and

high productivity (54–56). Conversely, in northern regions of the
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country the presence of Africanized feral populations with

undesirable characteristics for beekeeping (swarming tendency

and high defensive behavior) precludes the breeding selection

contributing to the genetic background of commercial honey bee

colonies (5, 57). Recently, colonies with desirable traits (docility,

resistance to brood disease, and adaptation to a subtropical climate)

have been characterized in the northwestern region of the country

(58, 59), offering an opportunity to preserve honey bee stocks for

the development of sustainable apiculture in a subtropical climate.

These hybrid colonies have possibly inherited the best

characteristics from their European and African origins, as have

previously been described in other regions of the American

Continent (3, 60, 61).

Next Generation Sequencing (NGS) techniques enable the

detection of large numbers of single nucleotide polymorphisms

(SNPs) in a cost- and time-efficient manner (62). In A. mellifera,

these technologies have facilitated high-resolution genomic studies

at the population level, genetic variability and evolution analyses

and genotype-phenotype relationship supporting marker-assisted

selection for breeding (63–66). Within this group, the Double

Digest Restriction-Site Associated DNA (ddRADseq) technique

has been widely utilized as an affordable alternative for the

genotyping of individuals in model or non-model species with a

reduced representation of the genome of interest, thus lowering

costs and analysis time (67). Several investigations have been

carried out in the last decade using RADseq techniques in A.

mellifera (63, 68), including evolutionary history studies (69) and

analyses of population structure and variability (70–73).

In this article, we describe the integral characterization of AHB

colonies of the same wild origin, located in northwest Argentina

(Tucumán province). These colonies possess demonstrated

tolerance to the ectoparasitic mite Varroa destructor Anderson

and Trueman (Acari: Varroidae) and variability in defensive

behavior (58). Evaluations were performed throughout the 2019–

2021 productive beekeeping seasons and honey bee colonies with

contrasting defensive behavior were analyzed by ddRADseq. The

SNP analysis presented here provides a genetic characterization of

these contrasting colonies and a set of markers and genomic regions

potentially associated with defensive behavior to be further analyzed

in breeding programs that seek to improve beekeeping using

innovative NGS tools.
2 Materials and methods

2.1 Biological material

We selected a previously characterized A. mellifera colony

(named LE2) (58), hereafter named LE0, as a mother colony to

generate the biological material analyzed in the present study. The

LE0 colony, established in the Leales Apiary (Santa Rosa de Leales,

Tucumán, Argentina), represents a hybrid honey bee stock and

possesses an Africanized mitochondrial lineage (A1). It has shown

high colony strength in spring (category 1), as well as low

defensiveness and the ability to survive medium-high levels of V.

destructor without acaricide treatment since 2017 (58, 59).
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Daughter queens were generated in September 2019 using the

traslarvae method (74–76) and nucleus creation according to

protocols established for the region (77, 78; Figure 1). Once

natural fertilization of the new queens was confirmed, surviving

daughter colonies (LE1-9), showing similar high strength status,

and the mother colony LE0 were transferred to a new location to

facilitate their management. This new apiary was established in Tafı ́
Viejo (26°44’08.8 ’ ’S; 65°17 ’14.3’ ’W), Tucumán province

(Argentina). In this region, the landscape corresponds to the

piedmont type (79) with predominant commercial citrus

production, followed by sugarcane cultivation (80).
2.2 Colony status measurements

The daughter colonies were established and after three months

to strengthen (minimum adult population = at least three frames

covered by bees) the survey started. Colony strength (adult

population) was estimated by visual inspection of the top of the

hive following specific protocols set up for honey bee stocks adapted

to a subtropical climate (northern Argentina) (77, 81). The presence

of hybrid honey bee colonies (mixed European and African

lineages) in northern Argentina has been previously detected and

characterized (5, 12, 57) and constitute baseline information for the

evaluation proposed in the present study. Briefly, three categories of

colony strength were assigned according to the number of hive

frames covered with adult honey bees when the top of the beehive is

opened: the category 1 is registered when at least seven frames of the

hive are covered by bees; category 2 (five to seven frames); and

category 3 (four or fewer frames).

The brood population was evaluated for each colony as the total

area of combs covered with brood and the number of brood frames

(82, 83). For the observations, the bee hives were opened, and the

brood frames were sequentially removed. A panel subdivided into

quadrants of equal size was superimposed on each brood frame to

estimate the average area covered with brood. The number of brood

frames fully covered with brood was also registered.

The level of phoretic Varroa was estimated using the “Ethanol

wash method” (84, 85) only once during the beekeeping season:

(ES) on winter surviving colonies (Figure 1). This method is based

on the collection of 250 to 300 worker bees from brood frames in a

jar containing 70% v/v ethanol. The bottle is then capped and

shaken vigorously to dislodge mites from the bees, and then

separated by filtering. The percentage of mites is calculated from

the number of bees contained in the sample (% phoretic Varroa =

mites/bees*100) (84, 85). This parameter was registered in the

analyzed colonies with the purpose of confirming their tolerance

to the ectoparasitic mite, V. destructor. All the colonies analyzed in

the present study were maintained without acaricide treatment.
2.3 Defensive behavior

Defensive behavior was assessed by opening each honey bee

hive with minimal application of smoke and subsequent direct

observation for 30 seconds according to Ávalos et al. (86). Four
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defensive behavior variables were registered: “run” (tendency of

worker bees to run on honey bee combs), “fly” (tendency of worker

bees to fly during honey bee hive colony manipulation), “sting”

(tendency of worker bees to hit the operator) and “hang” (tendency

of worker bees to be grouped over the honey bee combs). A score

range from 1 to 4 (1 = the lowest intensity of response; 4 = the

highest intensity of response) was assigned to each of the four

behavior variables measured. All the observations were performed

and registered by the same operator. In addition, at each time point,

to eliminate the effect of the presence of the alarm pheromones

released by guarding honey bee workers (36, 87, 88), the behavior of

half of the colonies was measured intercalary, and after a period of

24 h, in the remaining colonies.
Frontiers in Insect Science 04
A defensive behavior index (DB index) was developed in the

present study based on a simple linear model. This index

summarizes the weighted values of each defensive behavior

variable. In the formula described below, each behavior score

(previously registered using the traditional approach described by

86) was multiplied by a fixed numerical value according to its

importance for the honey bee hive manipulation by the beekeeper,

as follows: 1) The “sting” behavior was considered the greatest

impact on the hive management and was, therefore, assigned the

highest fixed value per unit (0.15), followed by “fly” (0.05) and

“hang” and “run” (0.025) (59).

The DB index values ranged from 0.25 to 1 and were obtained

from the following formula:
FIGURE 1

Diagram showing the selection process of hybrid A. mellifera colonies for obtaining the biological material for this study. The black arrow indicates
selection of colonies; The grey arrow indicates multiplication. Mt. Haplotype: mitochondrial haplotype (genetic characterization). The colonies were
surveyed six times during the beekeeping season: late spring-summer 2019, autumn 2020, winter 2020, early spring 2020, 1st productive peak 2020
and 2nd productive peak 2020. Crossed out colonies indicate lost colonies during the time of the survey.
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Index DB = (0:15 x  “ sting ”  score) + (0:05 x  “ fly ”  score)

+ (0:025 x  “ hang ”  score) + (0:025 x  “ run ”  score) :

The honey bee colonies were surveyed for the above-mentioned

parameters (except phoretic Varroa) six times during the 2019–

2021 productive beekeeping season as follows: at the beginning of

the beekeeping season during the late spring-summer (December)

2019 (B); autumn (April) 2020 (A); winter (Jun) 2020 (W); early

spring (September) 2020 (ES); first Productive Peak (PP1) in

spring/summer (December) 2020; and second Productive Peak

(PP2) in summer (February) 2021 (Figure 1). The colony surveys

were performed during each time of the beekeeping season at peak

activity hours of the honey bees (between 10 and 12 am) during

sunny days with favorable weather conditions (temperature >20°C).

For each survey, defensive behavior and strength category were

measured on the same day, the behavioral evaluation was

performed first and then the category of the colony.
2.4 Statistical analysis

Colony strength values were compared among daughter (LE2-

LE9) and mother (LE0) colonies in the Tafı ́Viejo apiary at different
times of the beekeeping season (B, A, W, ES, PP1 and PP2) using

the Kruskal-Wallis (K-W) test. Brood population data was analyzed

by a one-way analysis of variance (ANOVA) (factors = Hive [LE]

and Time [B, A, W, ES, PP1 and PP2]).

Defensive behavior variables (run, hang, sting, and fly and the

CD index) were compared among colonies at different times of the

beekeeping season (B, A, W, ES, PP1 and PP2). All analyses were

performed using Kruskal-Wallis (K-W) tests. In addition, a

multivariate Principal Coordinate Analysis (PCoA) was

performed using Gower’s similarity coefficient (89), based on the

defensive behavior variables which resulted statistically significant

in the above-mentioned analyses and registered at the ES (early

spring) time. This specific moment in the beekeeping season is

important to determine the defensive behavior of a colony since it is

the season when the colony is leaving the wintering and reinitiating

the productive stage. Statistical analyses were performed using

InfoStat 2016 (90).
2.5 Selection of daughter colonies for
NGS analysis

Taking into account the population and behavior parameters

registered during the evaluation, the mother (LE0) and two

daughter colonies were selected to perform Double Digest

Restriction-Site Associated DNA (ddRADseq) according to the

following criteria: 1) Stable colony strength parameters during

early spring [ES] and productive peaks [PP1 and PP2]), 2) Stable

brood population (N° frames with brood >6; % brood/Frame >60)

during ES, PP1 and PP2 and, 3) Contrasting and even defensive

behavior (most contrasting average values of CD index throughout

ES, PP1, PP2) (Figure 1). We have selected colonies that presented
Frontiers in Insect Science 05
even defensive behavior during ES-PP1-PP2, since these are the

moments when the most intense productive management takes

place and the number of individuals within the colony and the

volume of entered food are at maximum values.

With this strategy (selected daughter colonies originated from

the same mother colony) we expect to detect phenotypic and

genetic differences possibly attributed to the differential paternal

origin, according to the polyandry of the species (91, 92). Twenty

newly-emerged worker bees were randomly chosen and extracted

from a brood frame of each colony under laboratory conditions.

Each worker was individually placed in 1.5 ml tubes, frozen in liquid

nitrogen for 1 min and then preserved frozen (-80°C) to be

processed for NGS analyses.
2.6 DNA isolation

An individual DNA extraction from each preserved worker (whole

body) was performed using a modified CTAB Chloroform/octanol

protocol (93). First, grinding was performed with liquid nitrogen to

powder. The powder was then transferred to a 1.5 ml tube with 900 ml
of extraction buffer (1.4 M NaCl, 20 mM EDTA, 100 mM Tris-HCl

and sterile H20). Tubes were incubated at 65°C for 30min, maintaining

gentle agitation. Then 450 ml of chloroform:isoamyl alcohol (24:1) was

added and mixing by inversion was performed for 10 min. The

resulting emulsions were centrifuged at 14000 rpm for 30 min. The

aqueous phase of each sample was recovered into a clean tube, 5 ml of
RNase (10 mg/ml) was added, and the tube was incubated at 37°C for

60 min. Then 450 ml of chloroform:isoamyl alcohol (24:1) solution was

added, and the samples were mixed by inversion again. The samples

were centrifuged again at 14000 rpm for 30min to recover the aqueous

phase of each sample. Finally, the DNAwas precipitated by addition of

600 ml of cold isopropanol (-20°C) and subsequent mixing by

inversion. DNA precipitates were recovered by spin centrifugation,

the supernatant was discarded, and the pellet was washed with 500 ml
of cold 70% ETOH (-20°C). After drying, the precipitates were

resuspended in 50 ml of sterile H20 (HPLC quality).

The quality of the obtained DNA samples was assessed by

electrophoresis in 0.8% w/v agarose gel with GelRed (Biotium)

according to the manufacturer’s specifications. Then, DNA samples

were sent to the Genomic Unit at IABIMO-CONICET INTA

Castelar, Buenos Aires (Argentina), where DNA concentration

was measured using Qubit (ThermoFisher). Then, two pools per

colony (LE0, LE2 and LE6) were performed with equal amounts of

DNA from eight individuals each, yielding a total of six pooled

samples (16 workers from each colony).
2.7 Preparation and sequencing of
ddRADseq libraries

Double Digest Restriction-Site Associated DNA (ddRADseq)

requires a particular combination of two restriction enzymes in the

digestion step (63, 67). Regarding the criteria for selecting the

enzymes for the A. mellifera genome digestion, EcoRI and MspI
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had been previously tested with other enzymes involving the

ddRADseq technique (68, 71, 73), whereas MboI had been used in

mitochondrial DNA studies of the genus Apis (94) and mapping

approaches (95, 96). In the present study, two pairs of restriction

enzymes were tested for their usage in the digestion step before

ddRADseq library construction: the MspI/EcoRI combination,

selected according to previous bibliography (73), and the MboI/

EcoRI pair, available from the sequencing service (Genomic Unit at

IABIMO-CONICET INTA, Argentina). In silico digestion was

carried out using the reference genome of A. mellifera

Amel_HAv3.1 (NCBI Genome Assembly) and SimRAD package

(97) in R. In addition, this test of restriction enzymes was

performed using a set of randomly selected DNA samples

(obtained in this study) to confirm the size and quantity of the

resulting fragments. Pooled DNA samples were processed, and

ddRADseq libraries were constructed following the protocol

described by Aguirre et al. (98) using the MboI-EcoRI combination

in the digestion step. Paired-end sequencing (2x250) was performed

on a Novaseq6000 (SAGA-CIMMYT, Mexico).
2.8 Bioinformatic analysis

First, the quality of the batches was checked visually by using

FastQC (99). Sequences were filtered by quality using the

“process_radtags” program from the Stacks v2.62 package (100)

with default parameters. Adapters and poor-quality sequences were

removed using Trimmomatic v0.32 (101) with recommended

settings. The clean reads were mapped to the reference genome of

A. mellifera from NCBI Genome Assembly (Amel_HAv3.1), using

Bowtie2 v2.4.5 (102) under default settings by first indexing the

genome and then mapping the ddRADseq short reads. To assemble

loci according to the alignment positions provided for each read

and SNP calling, we ran the “ref_map.pl” program (Stacks). The

“populations” program was run afterward to generate population-
Frontiers in Insect Science 06
level summary statistics; the corresponding raw SNP matrix was

obtained under Variant Call Format (VCF).

To predict the functional effect of polymorphisms, the Variant

Effect Predictor (VEP) from the Ensembl Metazoa (version release

55) (103) was used. The density of SNPs per chromosome was

plotted using CMplot package (v.3.1.3) (104) in R (105, 106).

For pathway mapping and functional enrichment analysis,

ShinyGO v0.76.3 software (107) was used with default settings,

including: pathway database for gene count option was allowed;

statistically significant pathways were selected by FDR and sorted by

Fold Enrichment. The g:Profiler ve107_eg54_p17_bf42210 was also

used with database updated on 15/09/2022 (108). The in-cis potential

targets of the SNPs annotated as parts of lncRNAs were searched.

Protein-coding genes 10 k to 100 k upstream and downstream of

lncRNAs were identified and their function was further investigated

using KOBAS (version 3.0) (109) and the NCBI database.

A dendrogram was inferred using the filtered SNPs among the

six ddRADseq libraries from the VCF file, based on pairwise

identity-by-state (IBS) values using the SNPRelate package

version 1.32.2 (110). The dendrogram was constructed using the

maximum likelihood hierarchical clustering analysis implemented

in the snpgdsHCluster (SNPRelate) option and plotted with the R

package ggplot2 (111). Chi-square analyses (112) were performed

to visualize the genetic differences between colonies (LE2, LE6 and

LE0) in relation to population parameters, namely heterozygosity

(HTZ), reference homozygosity (REF HMZ) and alternative

homozygosity (ALT HMZ), using InfoStat 2016 software (90).
3 Results

3.1 Colony status analysis

All colonies surveyed showed the greatest strength at the

beginning of the survey (category 1, Figure 2; Supplementary
FIGURE 2

Colony strength of A mellifera colonies from Tafı ́ Viejo apiary at six specific times during the beekeeping season: late spring-summer 2019 (B),
autumn 2020 (A), winter 2020 (W), early spring 2020 (ES), 1st productive peak 2020 (PP1) and 2nd productive peak 2020 (PP2). In different colors,
the mean percentage of colonies in category 1 (at least seven frames covered by worker bees), category 2 (five to seven frames covered by worker
bees) or 3 (four or fewer frames covered by worker bees) and percentage of lost colonies are shown.
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Table 1). In autumn, two daughters (LE6, 7) and the mother (LE0)

colonies (33%) remained in category 1, while 45% of the colonies

(four daughter colonies LE2, 4, 8 and 9) dropped to category 2, and

22% (LE1 and LE3 changed drastically to category 3 (Figure 2).

During winter, 67% of the colonies (six daughter colonies LE1, 2, 4,

6, 7 and 8) were in category 2, 22% (2 colonies, LE3 and LE9) in

category 3 and only the mother colony (LE0) was in category 1

(Figure 2). In early spring, two colonies (LE1 and LE3) (22%) were

considered lost, one colony (LE8) remained in category 2 (11%),

and six colonies (the mother colony and five daughters LE2, 4, 6, 7.

8, and 9) were upgraded to category 1 (67%) (Figure 2). During the

first productive peak (PP1), 33% (three daughter colonies LE1, 3

and 8) recorded losses and the remaining six colonies (LE2, 4, 6, 7, 9

and the mother colony LE0) were in category 1 (67%). For the

second productive peak (PP2) we registered five colonies (daughter

LE2, 6, 7, 9 and the mother (LE0) colonies; 55%) in category 1 and

45% of the colonies (daughter colonies LE1, 3, 4, 8) were registered

as lost (Figure 2). No significant differences were found for colony

strength between colonies (H= 2.04, p=0.96 K-W test). However, a

statistically significant difference was observed between the six

moments of the beekeeping season evaluated (B, A, W, ES, PP1

and PP2) (H= 25.39, p= <0.0001 K-W test).

The brood population of the surveyed colonies showed

dissimilar patterns throughout the beekeeping season for both the

number of brood frames and the percentage of brood per frame,

except in early spring. During this time of the season, we observed

convergent dynamics of the different colonies in terms of the

number of brood frames (Supplementary Table 1). In addition,

significant differences were observed for the number of fully covered

frames per brood (F=5.83; p<0.0001) and the percentage of brood

per frame (F=2.56; p=0.0217) among the colonies. However, non-

significant differences were observed among colonies for times of

the year. Regarding phoretic Varroa, we observed a high variability

among the obtained values for each of the surviving colonies at the

time of sampling (ES), with a mean of 4.55% and a deviation equal

to 3.89 (Supplementary Table 1).
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3.2 Defensive behavior analysis

The analysis of defensive behavior variables (Kruskal-Wallis

test) showed significant differences between the mother and

daughter colonies for “run” (H=16.00; p=0.0163), “hang”

(H=14.76; p= 0.0056), “sting” (H= 18.28; p= 0.0026) and the DB

Index (H= 15.16; p=0.0483). However, no significant differences

were observed between colonies for “fly” (H= 9.44; p=0.2115). In

addition, the same dynamics of defensive behavior was observed

between the mother and daughter colonies among the different

evaluation times during the beekeeping season (“run” [H=3.14;

p=0.5958], “hang” [H=0.68; p= 0.9627], “sting” [H= 4.30; p=

0.3511], DB Index [H= 6.75; p=0.2242] and “fly” [H= 6.78;

p=0.1694]) (Supplementary Table 1). The distribution of

evaluated honey bee colonies in the two-dimension space (PCoA)

confirmed that the behavior variables exhibiting significant

differences (run, sting, hang and DB Index) were useful to explain

68.6% of the observed variability in the first two components

(PC1 = 46.2; PC2 = 22.4; Figure 3). LE2 and LE6/LE8 and LE7

were located in opposite positions in the X-axis, while LE4 and LE9

and the mother colony (LE0) were centrally located (Figure 3).
3.3 Selection of daughter colonies and
sample preparation for NGS analysis

Two daughter (LE2 and LE6) and the mother (LE0) colonies

were selected for NGS assay according to the results registered for

their biological and behavior parameters, as follows: the three

colonies maintained a stable colony strength (category 1) and

stable brood population (N° frames with brood >6; % brood/

Frame >60) throughout the ES, PP1 and PP2 time period. Also,

the two daughter colonies (LE2 and LE6) displayed contrasting and

stable defensive behavior. Specifically, we observed the lowest

average CD index (0.31) in the LE2 daughter colony and the

highest average CD index (0.70) in the LE6, while the mother
FIGURE 3

Principal coordinate analysis (PCoA) scatterplot for A. mellifera colonies based on all defensive behavior variables using Gower’s similarity coefficient (89).
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colony (LE0) showed a mean value (0.39) throughout the time

period (Supplementary Table 1). The in silico enzymatic digestion

of the reference DNA (A. mellifera Genome Assembly,

Amel_HAv3.1 NCBI) with MboI/EcoRI combination yielded a

higher number of fragments (16,035 fragments) of the desired

size (~450 to 500 bp) than MspI/EcoRI combination (7,562

fragments). The number of total cut sites in the reference genome

was 239,138 forMspI, 63,098 for EcoRI and 61,422 forMboI, hence

demonstrating a higher efficiency of the first enzyme combination

for the preparation of NGS samples. In addition, both enzyme

combinations tested in the laboratory confirmed the in silico results

(results not shown).
3.4 ddRADseq analysis

The analysis of the six ddRADseq libraries (LE0, LE2 and LE6;

two replicates each) yielded a total of 16,360,032 raw paired-end

reads (2x250). After cleaning the raw data, a mean value of 99.4% of

reads was retained (Supplementary Table 2). An average alignment

rate of 60.5% was obtained after mapping reads to the reference

genome. A total of 12,971 variant sites (SNPs) were found to be

distributed in 33,053 assembled loci.

Of the 12,971 variant sites processed, 80.40% (10,492 SNPs)

were identified as present in protein-coding regions. From this

percentage, 73% had a synonymous effect whereas 26% was

predicted to cause changes in the amino acid sequence (missense

variants). The remaining 13.27% (1,721 SNPs) was cataloged as

without description, 4.68% (607 SNPs) as lncRNA, 0.79% (103

SNPs) as miRNA, 0.11% (14 SNPs) as non-translating CDS, 0.08%

(10 SNPs) as pseudogenes and 0.66% (86 SNPs) and 0.01% (1 SNP)

as tRNA and rRNA, respectively (Figure 4). In addition, 70% of the

SNPs that produced a variant effect corresponded to intronic

variants, accounting for more than half of the variants detected,

while upstream and downstream gene variants accounted for 9%

and 7%, respectively (Figure 4). The remaining percentage values

were distributed as follows: non-coding transcript variant (5%),
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intergenic variant (3%), synonymous variant (2%), 3-prime UTR

variant (1%), 5-prime UTR variant (1%) and others (3%).

The functional annotation of 2,527 genes and subsequent gene

enrichment analysis identified 113 GO terms. These terms were

classified into functional categories such as cellular component (CC,

12 GO terms), molecular function (MF, 30 GO terms) and

biological process (BP, 70 GO terms), as well as KEGGs (Kyoto

Encyclopedia of Genes and Genomes) pathways (1 term)

(Supplementary Table 3). Enriched GO terms for CC category

included plasma membrane, cell periphery, cell junction, intrinsic

component of plasma membrane and synapse. The most

significantly enriched GO terms for the MF category were

associated with DNA-binding transcription factor, transcription

regulator, calcium ion binding and G-protein-coupled receptor

activities. GO terms enriched in BP were mainly related to the

regulation of biological processes, such as nucleic-acid

transcription, biosynthesis, signaling, cell communication and

developmental processes (See Supplementary Table 3). The

neuroactive ligand-receptor interaction category from the KEGG

database was shown to be enriched with 31 genes belonging to this

term (Supplementary Figure 1).

A total of 20 pathways yielded an FDR value of less than 0.035

(Figure 5). The most enriched pathways included “Neuroactive

ligand-receptor interaction” (19 genes), “ABC transporters” (4

genes), “Notch signaling pathway” (4 genes) and “Retinol

metabolism” (3 genes). Among the top 20 enriched pathways,

“Metabolic pathways”, “Neuroactive ligand-receptor interaction”

and “MAPK signaling” together included most of the genes of the

data (Figure 5). The SNPs detected in the 5-HT genes are part of the

neuroactive ligand-receptor interaction pathway. The identified

variants are mostly intronic polymorphisms, potentially involved

in the alternative splicing by interfering with splice site recognition

(Supplementary Table 4).

The graphical representation of the SNP distribution (12,971)

along the A. mellifera reference genome demonstrated the presence

of SNPs in the 16 linkage groups, which was enhanced in LG1

(Figure 6). The statistical analysis of the SNP matrix revealed 142
FIGURE 4

Histogram depicting the number of SNPs associated with biological effects according to VEP (Ensembl Metazoa).
frontiersin.org

https://doi.org/10.3389/finsc.2023.1175760
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Bianchi et al. 10.3389/finsc.2023.1175760
SNPs differentially present between samples (LE0, LE2 and LE6).

Hierarchical cluster analysis of the matrix displayed in a

dendrogram (Figure 7; Supplementary Table 5) showed a clear

clustering of the samples, with LE0 being more closely related to

LE6, which exhibited a higher level of defensive behavior than LE2.

From a total of 12,971 polymorphic sites, 647 SNPs were located

in protein-coding regions corresponding to 128 genes with mostly

known functions. Eighty-two percent of them were annotated as

related to different aspects of behavior, namely development,

morphology, immune response and caste division, among others.

From this SNP set, 128 SNPs were mapped in 21 genes previously

reported to be involved in defensive behavior, including dop3 and

dopR2, Camkii and Adar, obp9 and obp10 or members of the 5-HT

family (Supplementary Table 6).

A population analysis of this set of 128 SNPs revealed that LE0

had the highest percentage of reference homozygosity (REF HMZ)

(52.63%) and the lowest percentage of heterozygosity (HTZ)

(45.7%). LE6 showed the highest percentage of heterozygosity

(55.08%), as well as alternative homozygosity (ALT HMZ)

(2.34%) and the lowest percentage of REF HMZ (42.58%). In

contrast, LE2 exhibited the lowest value for ALT HMZ (1.56%),

together with LE0 (Figure 8). At the statistical level, significant

differences were observed between samples (Chi-square Pearson:

c2 = 25.4, p = 0.0046) but not between colonies (c2 = 5.57,

p = 0.2334).
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We further investigated the possible role of the lncRNAs, in

which 607 SNPs were detected by predicting the potential targets of

lncRNAs by in-cis regulation. A total of 1,232 target loci between 10

and 100 kb up and downstream from 178 lncRNAs were predicted

in the in-cis role. Among them, 28 genes and 18 microRNAs were

included (Supplementary Table 7). Some of these genes included

Nxr-1, NLG-5, Dop3, Dnmt1a, Y-y, Silk Fibroin 1 2 3 and 4, E75,

nAChRb1, Pla2, mcdp and apamin, among others. Using KOBAS

enrichment module, we identified three significantly enriched

pathways (p-value<0.05) in the predicted in-cis targets of the

lncRNAs. The pathways were related to metabolism, such as

alpha-linolenic acid metabolism, oxidative phosphorylation, and

retinol metabolism.
4 Discussion

The characterization of A. mellifera ecotypes adapted to

subtropical climate and the understanding of their genotypic and

phenotypic diversity are essential for efficient breeding,

conservation, and management of honey bee germplasm. In the

present study, we developed a protocol for the selection of

Africanized honey bee stocks based on desirable phenotypic

characteristics for beekeeping (colony strength, brood population

and defensive behavior) and analyzed the genetic variability of
FIGURE 6

SNP density across the 16 chromosomes (linkage groups) of A. mellifera representing the number of SNPs within 1 Mb window size. The horizontal axis
represents the chromosome length in Mb. Different colors correspond to SNP density (color scale on the right side of the image). LG, linkage groups.
FIGURE 5

Significant molecular pathways selected by FDR and sorted by Fold Enrichment generated (ShinyGo tool).
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colonies that displayed contrasting defensive behavior as a first

approach to understanding possible molecular pathways associated

with this behavior in the analyzed honey bee stock.

The results showed homogeneity in the adult population

(strength) among the surveyed colonies throughout the

beekeeping season. This finding indicates that the mother colony

and its daughters had similar dynamics in terms of the number of

adult worker bees. However, we found significant differences among

colonies at different times of the beekeeping season. These

differences were mostly attributed to the difference in the

sensitivity of the colony to changes in the environment and to the

natural population dynamics of colonies in subtropical climate (58,

113–115) performed by honey bees from each colony during the

time surveyed. In addition, we observed significant differences

between colonies for both variables of brood population, the

percentage of brood per frame and the number of frames with

brood. For the percentage of brood per frame, the greatest

differences were observed during autumn and early spring, which
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could be related to the differential response of each colony to the

changing climatic conditions and the internal management of

colony resources (113, 114). Likewise, the variation registered in

the number of brood frames during early spring and the first

productive peak could be linked to a differential response to the

activation of the natural food input to the colony (33). The reported

colony losses in our study might be related to several factors

depending on the seasonality. For instance, during early spring,

the loss of Africanized colonies is associated with a more marked

tendency to swarm due to the reentry of food into the colony and

the subsequent explosive population growth (9, 116). During

productive peaks, losses are mainly related to avoidance behavior,

also highly frequent in Africanized colonies. This behavior is

described as a consequence of environmental stressors such as

handling, the presence of harmful particles in food sources and

excessive rainfall, among others (117).

The experimental design used in the present study, including

the analysis of behavior, population, and genetic variables from

mother and daughter A. mellifera colonies, revealed that the

variability reported for four of the five defensive behavior

parameters are potentially associated with genetic differences of

paternal origin. Firstly, the environmental factors and beekeeping

practices must have affected the colonies in the same way, as they

shared location and management. Secondly, according to previous

studies (38, 48, 82, 118), defensive behavior displays characteristics

of dominance and paternal bias, mainly related to the variability

generated by the mating behavior and reproductive system of A.

mellifera (reproduction managed by a single fertile female mated by

12 to up to 30 drones; (119, 120). The paternal influence on this

character could explain the statistical differences detected in our

study between the LE0 colony and the daughter colonies since they

share the same maternal background.

The DB (Defensive Behavior) index developed in this study to

summarize the defensiveness displayed by the A. mellifera colonies

surveyed was consistent with the unweighted values of each of its

components. In addition, this index was useful as a selection

criterion to detect the two daughter colonies (LE2 and LE6)

which exhibited contrasting defensive behavior for ddRADseq

analysis. Further surveys under field conditions are needed to test

its usefulness as a potential tool for the selection of A. mellifera

colonies by low defensive behavior under a subtropical climate.

The ddRADseq technique utilized in the present study set up a

new combination of restriction enzymes (MboI/EcoRI) yielding a

higher number of DNA fragments of desired size (~450 to 500 bp)

than the other enzyme combination (MspI/EcoRI) tested. EcoRI

and MspI have been previously tested in A. mellifera, in

conjunction with other enzymes involving ddRADseq studies (68,

71, 73). Therefore, the present study provides a precedent for the

use of MboI/EcoRI for ddRADseq analysis of Africanized A.

mellifera colonies.

Regarding ddRADseq libraries, even though sequence retention

after quality filtering was very high, we obtained both a lower

alignment rate against the Amel_HAv3.1 reference genome and

fewer SNPs between samples in comparison with previous studies

(68, 71, 72). We expected these results because we used hybrid

genetic material instead of pure subspecies, as shown in the cited
FIGURE 7

Dendrogram based on hierarchical cluster analysis (pairwise
identity-by-state values) from SNP data of six A. mellifera colonies.
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studies. These differences can also be attributed to the sample size

and the fact that our samples were closely related to each other,

being derived from the same mother colony. Further studies with a

higher number of colonies should be performed to explore in

greater depth the genotypic differences detected.

We identified a total of 12,971 SNPs in the overall comparison

of mapped reads against the reference A. mellifera genome

distributed in the 16 linkage groups (chromosomes), showing a

wide SNP coverage in all linkage groups. In 142 SNPs, we found

significant differences between paired comparisons of the analyzed

samples. According to the distance matrix generated based on this

SNP set, the least defensive daughter (colony LE2) proved to be the

most distant from the mother colony, LE0, which was relatively

closer to the colony that exhibited the highest defensiveness (LE6).

These results made evident the paternal influence on this character

and the need for controlled conditions to minimize the defensive

behavior in daughter colonies, as previously reported by Giray et al.

(46), Büchler et al. (74), Lenoir et al. (121).

The analysis of mapped SNPs in protein-coding regions,

evidenced the presence of this type of polymorphisms in 21 genes

putatively related to defensive behavior according to previous

studies, as modulators of learning and memory, olfactory

receptors, neurotransmitters or components of both the nervous

and immune systems. Some of these genes were as follows: dop3 and

dopR2, from the dopamine family, associated with learning and

memory (122); Camkii and Adar, identified as behavior modulators

by Whitfield et al. (123); obp9 and obp10 belonging to the OBP

family, involved in olfactory sensitivity (124); and members of the

5-HT family (four present among the genes detected in the present

study) related to neurological processes through the regulation of

octopamine and serotonin receptors (125–127). Recently, Acevedo-

Gonzalez et al. (128) have described a direct relationship between
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the 5-HT family genes and the expression of defensive behavior in

Africanized honey bees from Puerto Rico, specifically for genes

identified as 5HT2a (alpha and beta). On the whole, the available

information should indicate common molecular pathways

underlying this behavior in pure and hybrid honey bee lineages.

Notably, in the present study, from the 128 SNP set associated

with the defensive response, the most defensive colony, LE6,

showed higher alternative homozygosis and heterozygosis than

the least defensive daughter colony, LE2, whereas the mother

colony had the highest percentage of REF HMZ and the lowest

HTZ values. Taking these results into account, we assume that the

observed behavioral variation could be closely related to the genetic

differences detected by ddRADseq, which have a high paternal

influence, in agreement with previous studies (48, 82, 118). The

colonies might have different paternal origins, given the polyandry

present in the species. These preliminary results need further

analysis by surveying a greater number of colonies and

generations to support the association between behavior

and genetics.

We also detected SNPs in long non-coding RNAs (lncRNAs).

Previous studies have confirmed the role of lncRNAs in many

biological processes, such as cell differentiation and development, as

well as immune responses and tumorigenesis (129). Further analysis

of the possible in-cis target regions of the identified lncRNAs

performed in the present study revealed that previously studied

genes were involved in nervous processes such as Neurexin 1 (Nrx-

1), Neuroglin 5 (NLG-5) (130) and D2-like dopamine receptor

(Dop3) (131). Other putative target genes include DNA

methyltransferase 1a (Dnmt1a) (132), yellow-y (Y-y) (133),

ecdysone-induced protein 75 (E75) (134), nicotinic acetylcholine

receptor (nAChRb1) (135) and bee venom components such as

phospholipase A2 (PLA2), mast cell degranulating peptide (mcdp)
FIGURE 8

Histogram of the percentage of heterozygosity (HTZ), reference homozygosity (REF HMZ) and alternative homozygosity (ALT HMZ) observed for 128
SNPs associated with defensive behavior in the A. mellifera colonies analyzed.
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and apamin (136–138). This raises the possibility that the lncRNAs

found in this study with differential SNP frequencies between sister

colonies with contrasting behavior may be acting as regulators of

the defensive response and opens the door to further investigations

to elucidate the role of these lncRNAs in defensive behavior.
5 Conclusion

Phenotypic and genetic characteristics of an Africanized A.

mellifera stock tolerant to V. destructor and displaying variability to

defensive behavior were evaluated here. Our results suggest a strong

paternal influence, evidenced by the polyandry exhibited by this

species (multiple fathers contributing to the expression of this

character), in agreement with previous findings. The tools and

protocols developed and used in the present study, such as the DB

index,MboI/EcoRI restriction enzyme combination and ddRADseq,

as well as the SNP dataset generated, could be used in future honey

bee selection projects based on defensive behavior and adaptability

to a subtropical climate. These promising tools would add

innovation to honey bee breeding programs at the regional level,

thus improving the productive capacity and competitiveness of

small and medium-sized honey producers. The selection and

multipl ication of honey bee colonies with promising

characteristics for beekeeping can be benefited by the saturation

of drone congregation zones with desired and known genetic

characteristics and/or the use/implementation of reproduction

stations and the movement of germplasm as have been previously

described (3 and references therein).

Our results set a precedent for the use of ddRADseq for the

identification of molecular markers and polymorphisms potentially

associated with defensive behavior, mainly those related to the 5HT

gene family and lncRNA. The gained information paves the way for

further research using a larger number of contrasting daughter

colonies for the trait of interest in order to perform linkage analyses

between this behavior and major genes involved in its expression.
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