

Secretaría de Agricultura, Ganadería y Pesca

RESULTADOS PRELIMINARES DE REDES DE EVALUACIÓN DE CEREALES DE INVIERNO, CAMPAÑA 2022-2023

Andrea FIGUERUELO^{1,2}, Daniel FUNARO¹, Alexandra DILLCHNEIDER^{2,3}, Fernando PORTA SIOTA^{1,2}, Donato FOSSASECA¹, Alan SANNEN¹, Valentín FOSSASECA¹, Walter GUILLOT GIRAUDO^{1,3}, Daniela ORTIZ^{1,2}

¹EEA Anguil "Ing.Agr. Guillermo Covas", INTA, ²Facultad de Agronomía, UNLPAM, ³CONICET

Las redes de ensayos se realizan para evaluar las características fenológicas, productivas y de comportamiento frente a enfermedades. Esta información es de suma utilidad en la caracterización de la adaptabilidad, estabilidad y producción de las variedades en cada región. La red de ensayos de trigo se encuentra distribuida en todas las subregiones trigueras de la Argentina. Otras redes de cereales de invierno tienen menor representación en las subregiones, pero cobran importancia local. La provincia de La Pampa pertenece a la Región denominada Pampeana y se diferencian 3 subregiones: subregión Pampa Semiárida Central (9), subregión Pampa Semiárida Sur (10) y subregión Pampa Seca (11). En las subregiones 9 y 10 se concentra la mayor producción de cereales de invierno de la provincia.

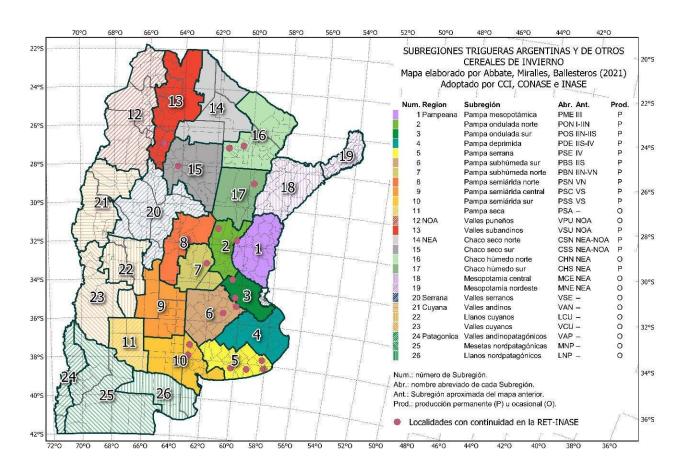


Fig. 1. Mapa de las Subregiones trigueras de Argentina y de otros cereales de invierno. Abbate, Pablo, Miralles, Daniel & Ballesteros, Alberto. (2021).

Secretaría de Agricultura, Ganadería y Pesca

METODOLOGIA EXPERIMENTAL

En la EEA Anguil, correspondiente a la Subregión Pampa semiárida central (9) se evaluaron en la campaña 2022/23 75 cultivares de trigo pan, de ciclo largo, intermedio y corto en dos fechas de siembras, y 6 cultivares de triticale, 5 de centeno y 7 de avena en una única fecha de siembra.

Las fechas de siembra para los ensayos de trigo se realizaron el 8 de julio (primera) y el 2 de agosto (segunda). Para los demás cereales la siembra se realizó el 21 de julio.

El diseño experimental fue en todos los casos en bloques aleatorizados con 3 repeticiones, con un tamaño de parcela de 7 surcos a una distancia de 20 cm y un largo de 4.5 m sobre antecesor girasol. El ensayo estuvo ubicado en un lote de textura franco arenoso de 1.6% MO, 24 kg/ha de nitratos en 0-60 cm de profundidad. Se sembró en directa con sembradora neumática de parcelas experimentales Baumer. Se realizó un barbecho químico para control de malezas aplicando 2000 cc de Glifosato Full (66.2%), 600 cc de 2.4D (98%), 200 cc de Dicamba. Se fertilizó con 50 kg/ha de PMA (11-52-0) y 180 kg/ha de urea (46-0-0) a la siembra.

En los ensayos de trigo en cada parcela se cosechó un área de 7 m² con cosechadora experimental de parcelas Weinstesteiger, se procesó cada muestra en laboratorio registrándose la humedad de esta para proceder a corregir el rendimiento a 14% de comercialización y el peso hectolítrico medidos mediante un equipo Delver (HD-1021-USB). Para los ensayos de avena, centeno y triticale, se cosechó manualmente una superficie de 1 m², se realizó la trilla en trilladora estacionaria, se procesaron las muestras en laboratorio y se corrigió el rendimiento con humedad equivalente a 12,5 %. Se determinó el contenido de proteina en grano de trigo por espectroscopía de infrarrojo cercano, NIR (equipo FOSS DS-2500).

ANALISIS ESTADISTICO

Los datos obtenidos en cada fecha se analizaron mediante análisis de la varianza según un diseño en bloques completos al azar y se calcularon las diferencias mínimas significativas respectivas para α =0.1, 0.05 y 0.01 para las comparaciones entre variedades.

RESULTADOS

El lote al momento de la siembra disponía de 69 mm de agua útil para la primera fecha de trigo y 103 mm de agua útil para la segunda fecha y la siembra de los demás cereales. La disponibilidad hídrica del perfil fue escasa en los primeros meses de crecimiento del cultivo, permitiendo una buena implantación con las precipitaciones ocurridas en julio (Tabla 1). Las precipitaciones que se registraron durante el del cultivo (julio-diciembre) fueron de 275 mm. En los meses del periodo crítico para la formación de los componentes de rendimiento (septiembre, octubre y principio de noviembre) fueron inferiores al promedio histórico. Si bien en noviembre, las precipitaciones, fueron superiores a la histórica mensual, estas ocurrieron al inicio y hacia fin de la etapa de llenado de grano, con poca influencia en el principal componente que es el número de granos.

Tabla 1: Precipitaciones ocurridas durante el año del ensayo (2021) y los registros históricos (2000-2020)

	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
PP 2022	35.8	91.4	126.0	74.2	1.3	0.5	24.0	9.5	42.5	65.0	126.7	7.6
PP Hist	91.7	88.8	109.5	60.2	24.4	11.6	17.6	20.3	58.8	91.5	77.3	61.6

Las temperaturas medias que se registraron durante todo el ciclo del cultivo estuvieron 3 ºC por debajo del promedio histórico, disminuyendo principalmente la temperatura mínima diaria, con una diferencia de 8ºC respecto a la histórica para el periodo junio-diciembre. La amplitud térmica promedio fue de 17ºC (Figura 1).

Secretaría de Agricultura, Ganadería y Pesca

Ministerio de Economía **Argentina**

En la primera quincena de septiembre, coincidente con el inicio de elongación de nudos en variedades de ciclo intermedio y largo, y en pleno macollaje en variedades de ciclo corto, ocurrieron dos días consecutivos de temperaturas extremas con más de 2 horas de duración registrando en promedio mínimas de -4.4 y - 3.5°C los días 9 y 10 de septiembre. Previamente ocurrieron mínimas de -4°C sumando varios días con exposición a bajas temperaturas (Tabla 2). Estas condiciones atmosféricas ocurridas provocaron pérdida de actividad fotosintética por clorosis en las hojas, afectando a los componentes de número de espigas por planta por esterilidad de los macollos y al número de espiguillas por espiga.

A principio de octubre se registraron en promedio temperaturas de -1.4 y -1.2 ºC en hacia fin de octubre (Tabla 2), con exposiciones de 2 y 3 hs con temperaturas menor a 0ºC y de 50 y 60 min con temperaturas menor a -1ºC. Principios de octubre el cultivo se encuentra en el estadio de espiga embuchada o hoja bandera totalmente expandida y fin de octubre se encuentran en antesis, donde temperaturas de -1ºC con más de 2 horas de exposición puede afectar considerablemente el rendimiento (Magra et al., 2013).

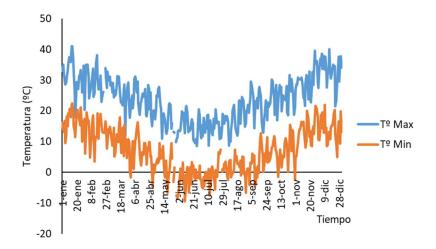


Figura 1: Temperatura máxima y mínima de la campaña 2022 y la histórica (2000-2021)

Tabla 2: Momento de ocurrencias de temperaturas mínimas y la duración de temperaturas inferiores a 0ºC.

Mes	Fecha	Tº min (ºC)	Duración	
Septiembre	2/9/2022	-4	5 hs 10 min	
	9/9/2022	-4.4	8 hs 20 min	
	10/9/2022	-3.5	8 hs	
	12/9/2022	-1.7	1 hs 10 min	
	14/9/2022	-0.2	50 min	
Octubre	9/10/2022	-1.4	2 hs 10 min	
	31/10/2022	-1.2	3 hs 30 min	

En las siguientes tablas se presentan los datos obtenidos de los ensayos para la primera (tabla 3) y segunda (tabla 4) fecha de siembra, avena (tabla 5), centeno (tabla 6) y triticale (tabla7).

Secretaría de Agricultura, Ganadería y Pesca

Ministerio de Economía **Argentina**

Tabla 3: Rendimiento (Kg/ha), contenido de proteína en grano (%, base 13,5% humedad), peso hectolítrico (g), peso de mil granos (g) y proteína (%) en los ensayos de la RET, Anguil 2022-2023, primera fecha de siembra.

6 1. I					_	
Ciclo	GC	Variedad		Peso Hectolitrico	•	
			kg/ha	kg/hl	mg	%
L		KLEIN FAVORITO II	2864	78.4	32.5	13.5
1	2	DM PEHUEN	2847	75.7	31.2	13.4
I	2	ACA 603	2778	76.2	32.7	13.9
L	1	ACA 363	2775	76.3	29.5	13.2
L	2	BUCK AIMARÁ	2732	78.6	33.8	14.3
I	3	ACA 605	2667	76.4	36.0	14.6
C	1	KLEIN VALOR	2618	76.4	28.2	14.0
L	3	BUCK PACIFICO	2615	73.8	32.8	13.7
C C	3 1	TIMBÓ	2597	75.2	33.2	13.4
L	2	KLEIN POTRO ACA 364	2594 2586	76.5	34.3 31.8	14.7 12.4
L	2	FRESNO	2511	77.3 76.4	34.3	14.4
C	2	SY 211	2470	74.8	31.8	14.4
IL	2	BAGUETTE 750	2463	76.7	29.7	13.1
L	1	KLEIN CIEN AÑOS	2462	77.0	34.8	14.6
L	2	BUCK CUMELEN	2453	76.3	30.5	12.7
1	2	ACA 604	2443	76.8	33.2	14.5
L	2	BUCK DESTELLO	2426	76.6	30.8	15.2
L	3	KLEIN GEMINIS	2364	75.8	32.5	14.0
C	2	SY 120	2279	75.3	28.2	13.7
C		INTA BONAERENSE	2256	74.4	29.2	12.4
L	2	ACA 362	2201	76.4	34.2	14.1
Ī	3	KLEIN LIEBRE	2182	77.9	29.0	14.5
C	2	PAMPERO	2167	51.4	25.2	14.4
Ī	1	KLEIN PROMETEO	2167	77.9	34.5	15.3
С	2	BUCK COLIHUE	2159	76.0	30.3	14.1
С	2	ALAMO	2146	78.1	29.3	14.2
L	2	ACA 502	2138	72.8	30.5	14.4
L	3	BUCK PEREGRINO	2110	71.3	30.8	15.1
1	2	KLEIN SELENIO CL	2098	76.1	33.5	14.2
L	3	ACA 308	2088	73.2	31.8	13.5
С	2	SY 109	2026	74.7	30.7	15.1
L	2	LG ARYAL	1999	70.7	29.2	14.0
Ţ	2	DM CATALPA	1990	72.7	30.3	14.5
L	2	BAGUETTE 820	1987	71.4	29.0	14.1
L	2	BASILIO	1972	75.0	31.0	14.1
С	3	INTA BONAERENSE	1897	70.6	27.5	14.7
С	3	GUAYABO	1883	72.7	27.7	14.4
С	2	LIMAY	1836	69.5	26.0	14.6
IL	2		1806	72.4	29.5	15.4
I	2		1755	74.2	27.7	14.7
I	2		1741	78.0	30.3	15.9
L	1	LAPACHO	1714	72.5	25.7	15.1
1	1	LG ARLASK	1646	76.9	28.7	15.2
С		INTA BONAERENSE	1634	73.0	26.2	16.2
С		INTA BONAERENSE	1590	71.0	24.0	16.9
L	2		1550	71.7	25.7	14.8
L	_	AGUARIBAY	1529	74.5	27.5	15.1
I	2		1502	71.2	22.8	15.3
С	3		1415	74.6	30.5	15.8
C		INTA BONAERENSE	1397	50.4	27.7	17.2
IL	3		1250	69.4	24.0	15.1
		Promedio	2142	74	30	14
		DMS (1%)	637	4.4	5.09	
		DMS(5%)	481	3.6	3.9	
		DMS(10%)	403	2.81	3.22	
		CV	14	2.76	7.9	

Secretaría de Agricultura, Ganadería y Pesca

Ministerio de Economía **Argentina**

Tabla 4: Rendimiento (Kg/ha), contenido de proteína en grano (%, base 13,5% humedad), peso hectolítrico (g), peso de mil granos (g) y proteína (%) en los ensayos de la RET, Anguil 2022-2023, segunda fecha de siembra.

Ciclo G	C Variedad	· ·	Peso Hectolitrico	Peso granos	Proteina
	· variedad	kg/ha	kg/hl	mg	%
L	2 BUCK AIMARÁ	2676	78.6	34.1	13.0
	1 KLEIN POTRO	2666	79.4	36.3	13.7
	1 ACA 460	2643	53.0	39.0	13.7
	3 KLEIN FAVORITO II	2639	80.2	32.9	12.4
	1 BUCK SAETA	2600	78.3	32.2	13.5
	3 GINGKO	2594	77.5	39.9	13.5
	1 KLEIN VALOR	2574	77.1	34.8	14.0
	3 BUCK PRETAL	2549	79.0	37.7	12.1
	2 ACA 917	2518	75.7	32.1	12.7
	3 ACA 605	2498	76.6	39.2	12.7
	2 BIOINTA 1008	2411	79.4	39.4	12.3
	1 BUCK FULGOR	2409	76.4	30.4	12.2
	2 ACA 604	2342	79.0	36.7	13.1
	1 ACA 920	2336	77.6	36.0	11.9
	2 BUCK COLIHUE	2190	78.5	34.0	13.3
	1 KLEIN NUTRIA	2158	82.0	39.9	13.6
	2 ACA 603	2152	75.4	31.1	13.2
	2 BUCK BRAVIO CL2	2151	79.4	38.1	12.9
	2 BUCK AMANCAY	2104	78.9	31.9	12.2
	2 ACA 916	2073	77.8	35.0	13.5
	1 ACA 921	2039	75.8	34.9	11.8
	2 ALAMO	1896	76.9	29.6	14.4
	1 KLEIN PROMETEO	1886	80.4	35.8	14.7
	1 BUCK MUTISIA	1871	79.5	43.2	12.6
	2 LG ZAINO	1829	76.1	29.3	15.2
	3 MS INTA BONAEREN		73.8	27.0	14.2
	2 DM AROMO	1755	73.9	27.5	13.8
	3 QUIRIKÓ	1741	74.5	29.9	15.6
	2 LG MORO	1729	78.5	29.7	14.6
	1 MS INTA BONAEREN		76.9	27.0	14.9
	2 BIOINTA 1006	1550	75.7	31.7	13.8
	2 DM ALERCE	1544	75.3	28.8	12.9
	1 DM TBIO AUDAZ	1515	74.2	25.4	14.8
	3 MS INTA BONAEREN		72.7	33.6	15.4
	1 LAPACHO	1452	72.0	27.0	13.6
	1 IS TORDO	1382	73.9	30.1	13.3
	2 DM ÑANDUBAY	1356	72.7	24.2	14.0
	2 PAMPERO	1319	74.0	26.5	13.6
	1 LG ARLASK	1210	79.2	32.7	14.2
	1 IS HORNERO	1205	73.0	27.6	15.0
	2 BAGUETTE 620	1184	69.1	30.3	14.6
	2 DM CEIBO	1172	73.2	27.2	14.5
-	Promedio	1971	76	33	14
	DMS (1%)	656	2.0	4.0	3.76
	DMS(5%)	495	1.5	3.0	2.84
	DMS(10%)	414	1.3	2.6	2.37
	CV	15	1.2	5.8	5.33
	-·			5.0	5.55

Secretaría de Agricultura, Ganadería y Pesca

La diferencia de rendimiento de las variedades, peso hectolitrico y peso de grano fue altamente significativo en todas las fechas de siembra. El rendimiento en promedio fue mayor en la primera fecha de siembra variando entre 1250 y 2864 kg/ha (Tabla 3) y para la segunda fecha varió entre 1172 y 2676 kg/ha. Se observa una alta diferencia entre cultivares frente a las condiciones climáticas ocurrentes, con variaciones en el peso de los granos y peso hectolítrico que influyeron en el rendimiento final. El contenido de proteína en grano fue superior en todos los cultivares a lo exigido por las normas de comercialización (11%) (Norma XX, 2014). Sin embargo, en las variedades que tienen menos de 75 kg de PH se concluye que el contenido de proteína es por concentración en granos clasificados como chuzos.

Tabla 5: Rendimiento (Kg/ha), peso de mil granos (g) en los ensayos de Avena, Anguil 2022-2023.

Ciclo	Cultivar	Rendimiento	Peso de mil granos
Cicio	Cultival	Kg/ha	g
	María INTA	2285	26,4
	Paloma INTA	1701	26,6
	Susana INTA	1671	21,2
	Elena INTA	1628	20,2
	Juana INTA	1566	26,8
	Elizabet INTA	1093	26,1
	Sofía INTA	1001	26,9
	Promedio	1564	24,9
	CV	18,3	
	DMS 10%	351	
	DMS 5%	426	
	DMS 1%	583	

Tabla 6: Rendimiento (Kg/ha), peso de mil granos (g) en los ensayos de Centeno, Anguil 2022-2023.

Ciclo	Cultivar	Rendimiento	Peso de mil granos
Cicio	Cultival	Kg/ha	g
	Don Ewald INTA	1179	21,6
	Don Norberto INTA	1087	21,2
	Ricardo INTA	1078	17,1
	Quehué INTA	1062	17,3
	Don José INTA	861	17,8
	Promedio	1053	19
	CV	23,1	

Secretaría de Agricultura, Ganadería y Pesca

Tabla 7: Rendimiento (Kg/ha), peso de mil granos (g) en los ensayos de Triticale, Anguil 2022-2023.

Ciclo	Cultivar	Rendimiento Kg/ha	Peso de mil granos
		<u> </u>	g
	Molle INTA	2042	27
	Barbol INTA	1831	32,7
	LAB 70	1797	32
	Ona INTA		28,8
	LAB 111	1304	28,7
	Don Santiago INTA	936	28,4
	Promedio	1578	29,6
	CV	11,2	
	DMS 10%	220	
	DMS 5%	268	
	DMS 1%	370	

Consideraciones

Teniendo en cuenta las consideraciones climáticas mencionadas anteriormente, podemos concluir que el factor de estrés que más afectó la formación del rendimiento fueron las bajas precipitaciones ocurridas durante el ciclo del cultivo adicionado a los bajos contenidos de agua en el perfil del suelo previo a la siembra de estos y con efecto moderado de las bajas temperaturas.