

Maíz en ambientes limitados del sur bonaerense

Densidad x Genotipo

Resultados campaña 2021-22, CEI Barrow

Ing. Agr. MsC Fernando Ross

En los ambientes limitados del sur bonaerense se genera una gran amplitud de posibilidades de rendimiento de maíz producto de la escasa capacidad de reserva hídrica y de las oscilaciones anuales de las precipitaciones. El ajuste de la densidad de siembra es uno de los factores principales en las estrategias de manejo local. La densidad óptima depende del nivel de rendimiento (Andrade, 1995; Andrade et al., 1999; Echarte et al., 2000). Sin embargo, en los ambientes limitados del sur bonaerense hay grandes limitaciones para predecirlo. Habitualmente, los productores locales utilizan densidades bajas para evitar pérdidas de rendimiento por exceso de densidad. En estas condiciones la plasticidad reproductiva juega un rol fundamental para no desaprovechar los buenos rendimientos que puede ofrecer el ambiente en años con condiciones favorables (Mylonas et al., 2020; Ross et al., 2020; Sinapidou et al., 2020).

En la Chacra Experimental Integrada Barrow (MDA – INTA) llevamos adelante líneas de trabajo que proponen caracterizar la plasticidad vegetativa y reproductiva de los híbridos disponibles en el mercado. Sin duda, este conocimiento permitiría minimizar las pérdidas de rendimiento por desajuste de densidad. Para ello se evalúan diferentes híbridos comerciales; en densidades extremas. Por un lado, identificando y midiendo las fuentes de plasticidad en condición de alta disponibilidad de recursos por planta (baja densidad). Y, en el otro extremo, se propone caracteriza la tolerancia a estés mediante la evaluación de los híbridos en condición de baja disponibilidad de recursos por planta (alta densidad).

El objetivo principal de esta línea de trabajo es generar información que permita ajustar el manejo agronómico para los diferentes híbridos comerciales disponibles en el mercado. En este trabajo se evaluó la respuesta a la densidad de siembra de diferentes híbridos de maíz en suelos de distinta capacidad de almacenaje de agua (somero y moderadamente profundo).

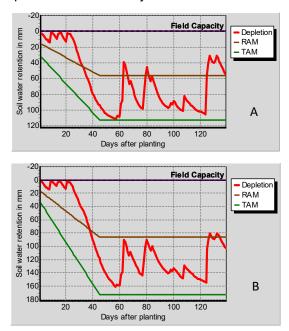
Materiales y métodos

Durante la campaña de gruesa 2021-2022 se realizó un ensayo experimental en la CEI Barrow. El ensayo se sembró el 20 de noviembre de 2021 con una sembradora Baumer neumática con cuatro surcos separados a 52,5 cm; en parcelas de 2,1 metros de ancho por 11 metros de longitud. Se evaluaron 16 híbridos comerciales (Tabla 1), sembrados en tres densidades objetivo (2 - 4 y 8 pl m⁻²), por un error en la siembra la densidad de 8 pl m⁻² en el sitio profundo quedó en 6 pl m⁻². Los sitios experimentales seleccionados fueron, suelo somero típico perteneciente a la serie Tres Arroyos (50-70 cm PE), y suelo moderadamente profundo perteneciente a la serie Laprida (90 - 110 cm PE). Ambos sitios experimentales se encuentran dentro de la CEI de Barrow separados por una distancia de 300 metros. El cultivo antecesor fue soja, para minimizar las deficiencias de nitrógeno, previo a la siembra (30 días) se fertilizó al voleo con 150 kg ha⁻¹ de nitrógeno como urea y durante la siembra con 100 kg

Secretaría de Agricultura, Ganadería y Pesca

ha-1 de DAP en la línea. Para mantener el ensayo libre de malezas se realizaron aplicaciones de herbicidas durante el ciclo del cultivo. En ambos sitios (somero e intermedio) se utilizó un diseño estadístico factorial con tres repeticiones, el análisis estadístico se realizó con INFOSTAT, evaluando un modelo integrado por las variables híbrido, densidad, ambiente y sus interacciones. El balance hídrico se realizó con el programa CROPWAT (FAO)

Tabla 1: Híbridos evaluados


Criadero	Híbrido
ACA	ACA470
ACA	ACA476
ACA	ACA481
ACA	ACA482
Dekalb	DK7208
Dekalb	DK7220
Dekalb	DK7272
La Tijereta	LT718
La Tijereta	LT723
MH	MH7
Nidera	NS7761
Nidera	NS7784
Nidera	NS7921
Pioneer	P0622
Pioneer	P2021
Pioneer	P9946

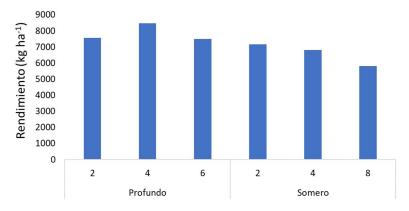
Resultados y discusión

Las particularidades ambientales de la campaña de gruesa ocurrieron en la primera quincena de enero (Fig. 1). El inicio del año 2022 se presentó con condiciones de calor extremo, elevando la tasa de demanda hídrica por parte de los cultivos, y llegando en extremo a superar los 10 mm de evapotranspiración potencial diaria (Fig. 1). Durante esta etapa, la demanda hídrica determinó el agotamiento del agua disponible en ambos suelos evaluados. Este consumo hídrico extremo se puede observar en la figura 2, donde se visualiza que el nivel de agua disponible en el suelo (línea roja) se encuentra casi en el punto de marchitez permanente (línea verde). Luego, hacia mediados de enero e inicio de febrero ocurrieron precipitaciones que permitieron el recupero de los cultivos (Fig. 2), permitiendo atravesar la etapa de floración en condiciones aceptables (Tabla 2). Debemos considerar que el balance hídrico realizado con el modelo Penman-Monteith es una simplificación matemática y ciertas veces no permite visualizar los efectos de la lluvia sobre la disponibilidad de agua momentánea para el cultivo. Luego de las lluvias (Fig. 2), en el balance se observa que la disponibilidad de agua para el cultivo se encuentra en la fase de restricción (menos del 50% de AU). Esto ocurre porque el cálculo de balance distribuye el agua de la lluvia en todo el perfil. Sin embargo, debemos considerar que el agua de la lluvia solo se localiza en la zona de mojado del suelo y allí está altamente disponible para el cultivo hasta su agotamiento.

Luego de la floración la escasez de lluvias no permitió reponer el agua del suelo, por lo cual los cultivos atravesaron gran parte de la etapa de llenado de grano en condiciones de estrés hídrico. La disponibilidad de agua en el suelo se reestableció con precipitaciones ocurridas en el último tercio del llenado. No obstante, las bajas temperaturas en el tercio final de la etapa de llenado no permitieron capitalizar plenamente el recupero de la disponibilidad hídrica.

Figura 1: Evolución de la temperatura máxima, mínima, precipitaciones y ETo en la campaña 2021-22. Los meses 6 a 12 corresponden al año 2021 y los meses 1 a 5 corresponden al año 2022.

Figura 2: Disponibilidad de agua en el suelo durante el ciclo del cultivo para ambos sitios, somero (A) y profundo (B). La línea superior indica capacidad de campo, la línea verde inferior indica punto de marchitez permanente y la línea marrón indica el 50% de capacidad de campo. La línea roja indica el nivel de agua del suelo para cada día del ciclo del cultivo. CROPWAT.

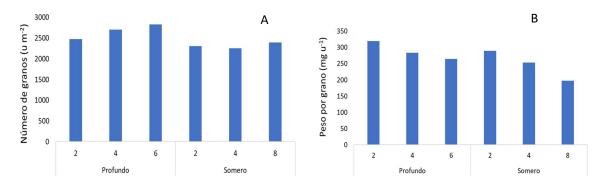

Las condiciones extremas de calor y demanda hídrica a inicios del mes de enero no afectaron significativamente la fenología. En la tabla 2 podemos observar que las diferencias en la fecha de floración entre híbridos resultaron las esperadas según ciclo y que los efectos de la densidad sobre el retraso de la floración resultaron similares a los medidos en campañas anteriores. Incrementos en la densidad de siembra determinaron un retraso menor en la floración masculina y mayor en la femenina, aumentando la asincronía floral ante incrementos de la densidad (Tabla 2). Como en otras campañas resulta muy interesante el contraste de comportamiento fenológico entre híbridos, por ejemplo, DK7220 presenta un retraso más marcado en la floración femenina que en la masculina ante aumentos de densidad. En cambio, NS7761 presentó un retraso similar en la floración masculina y femenina ante aumento de la densidad. Comportamiento que quizás erróneamente llamamos latencia. Este retraso con sincronía es muy

interesante y cada vez más frecuente en los híbridos modernos, que tienden a presentar un comportamiento similar a NS7761, aunque no tan marcado.

Tabla 2: Fecha de floración masculina (FM) y femenina (FF) en función del híbrido y de la densidad de siembra (pl. m⁻²).

Híbrido	Densidad	FM	FF	Híbrido	Densidad	FM	FF
ACA470	2	30-ene	02-feb		2	26-ene	28-ene
	4	28-ene	02-feb	LT718	4	28-ene	31-ene
	6-8	04-feb	07-feb		6-8	02-feb	06-feb
ACA476	2	01-feb	04-feb	LT723	2	26-ene	28-ene
	4	04-feb	06-feb		4	29-ene	30-ene
	6-8	05-feb	09-feb		6-8	30-ene	03-feb
	2	29-ene	03-feb	NS7761	2	29-ene	30-ene
ACA481	4	30-ene	04-feb		4	01-feb	03-feb
	6-8	02-feb	07-feb		6-8	06-feb	06-feb
ACA482	2	25-ene	28-ene	NS7784	2	03-feb	04-feb
	4	29-ene	30-ene		4	04-feb	07-feb
	6-8	29-ene	04-feb		6-8	07-feb	08-feb
	2	01-feb	02-feb	NS7921	2	03-feb	04-feb
DK7208	4	03-feb	06-feb		4	03-feb	06-feb
	6-8	05-feb	08-feb		6-8	04-feb	08-feb
DK7220	2	28-ene	30-ene	P9946	2	22-ene	21-ene
	4	30-ene	02-feb		4	22-ene	22-ene
	6-8	31-ene	04-feb		6-8	24-ene	23-ene
	2	31-ene	01-feb	P0622	2	24-ene	23-ene
DK7272	4	04-feb	05-feb		4	24-ene	24-ene
	6-8	05-feb	08-feb		6-8	26-ene	25-ene
MH7	2	28-ene	30-ene	P2021	2	25-ene	26-ene
	4	29-ene	03-feb		4	27-ene	29-ene
	6-8	01-feb	09-feb		6-8	30-ene	02-feb

En promedio, como era de esperar el sitio profundo logró mayor rendimiento en grano que el sitio somero (p<0.01). En el sitio profundo (considerando el promedio de todos los híbridos evaluados) la densidad de 4 pl m⁻² logró la mayor productividad (Fig. 3). En cambio, en el sitio somero no hubo diferencias significativas entre la densidad de 2 y 4 pl m⁻².


Figura 3: Rendimiento en grano en función de los sitios evaluados (somero y profundo) y de la densidad de siembra (pl. m⁻²). Valores promedio de todos los híbridos evaluados. DMS= 418 kg ha⁻¹

En el sitio profundo la densidad de siembra determinó incremento significativo en el número de granos por unidad de superficie hasta las 6 pl m⁻² (Fig. 4A). Sin embargo, ese incremento en el

número de granos no logró capitalizase en un incremento del rendimiento (Fig. 3), porque el aumento de densidad provocó una reducción marcada del peso por grano (Fig. 4B).

En el sitio somero los incrementos de densidad no lograron cambios sustantivos en el número de granos (Fig. 4A), pero si determinaron consecuencias negativas en el peso por grano (Fig. 4B). Proyectando pérdidas de rendimiento a mayor densidad. Los efectos de la densidad sobre el peso por grano resultaron coherentes con las limitaciones hídricas durante el llenado de los granos (Fig. 2). Poniendo de manifiesto que las densidades bajas, o ajustadas a cada ambiente, lograron mejores tasas de crecimiento durante la etapa de llenado.

Figura 4: Número de granos por unidad de superficie (A) y peso por grano (B) en función de los sitios evaluados (somero y profundo) y de la densidad de siembra (pl. m⁻²). Valores promedio de todos los híbridos evaluados.

En la tabla 3 se muestra el comportamiento individual de cada híbrido ante cambios en la densidad de siembra para los dos suelos evaluados. En el análisis de los resultados debemos considerar que no resultó significativa la interacción triple (HxDxA), lo cual indica que estadísticamente no habría diferencias entre híbridos en su respuesta ante cambios de densidad o de ambiente. Sin embargo, como en otras campañas si se encontraron diferencias notorias entre híbridos en los mecanismos de compensación (Tabla 3, prolificidad y macollos fértiles). En términos amplios podemos decir que ciertos híbridos se comportaron mejor en densidades ajustadas al nivel de rendimiento del ambiente y que otros, independientemente del ambiente, tuvieron su mejor comportamiento en baja densidad.

Las diferencias de plasticidad resultaron muy manifiestas al observar el comportamiento del híbrido de ciclo corto P9946, el cual presentó mayor respuesta a la densidad en comparación con el resto de los híbridos evaluados. Este resultado es esperable producto de una menor plasticidad vegetativa y reproductiva en ciclos cortos de maíz (Sarlangue y col., 2007). El ciclo intermedio P0622 también manifestó una respuesta significativa a la densidad y logró un rendimiento competitivo en ambos ambientes.

Para el grupo de ciclos completos, en el ambiente somero se observó que la mayoría de los materiales prolíficos lograron maximizar el rendimiento con 2 pl m⁻², y que cuando el aporte de la prolificidad no se hiso presente se necesitó de un incremento de densidad para maximizar el rendimiento. En ambiente somero en 2 pl m⁻² la presencia de plasticidad por macollaje no resultó una compensación completa. Este resultado es frecuente para ese mecanismo de compensación en ambientes restrictivos y condiciones adversas, especialmente cuando el llenado de grano se produce en condiciones de estrés hídrico. En el ambiente profundo, la mayoría de los híbridos logró el máximo rendimiento con 4 pl m⁻². Agradecemos la colaboración a todas las empresas que participaron.

Secretaría de Agricultura, Ganadería y Pesca

Tabla 3: Rendimiento total (**Rto**, kg ha⁻¹), rendimiento aportado por la segunda espiga del tallo principal (**RtoE2**) y rendimiento aportado por los macollos (**RtoM**); en función de sitio, densidad e híbrido. DMS =1700 kg ha⁻¹

l líle si el e	Densidad	Intermedio			Somero		
Híbrido		Rto	RtoE2	RtoM	Rto	RtoE2	RtoM
ACA482	2	8331	2528	1025	8770	2757	432
	4	9295	690	154	6900	236	0
	6	8629	101	0	6106	0	0
	2	8273	2423	2130	8527	3050	1581
LT723	4	9674	2472	580	7156	1504	0
	6	7848	766	0	5323	0	0
NS7921	2	8983	1921	2474	6375	486	2083
	4	9255	616	155	8056	348	147
	6	7300	33	0	6474	0	0
	2	7636	2900	268	7973	3217	300
DK7272	4	8232	695	0	7351	903	0
	6	7450	142	0	5588	0	0
	2	7830	2972	183	7697	3238	0
LT718	4	8184	1058	281	6634	1125	0
	6	7991	562	0	5676	0	0
	2	8713	2939	1341	7117	2912	284
ACA476	4	8487	1938	47	6641	1331	0
	6	7563	584	0	5298	0	0
	2	6102	1344	261	6788	1990	266
P0622	4	8551	799	0	8313	105	0
	6	7965	145	0	6007	0	0
	2	8010	1988	1489	7954	2826	300
P2021	4	7684	500	111	7006	839	0
	6	6655	141	0	6254	0	0
	2	8467	2864	1406	7420	2918	711
DK7208	4	7826	1231	279	6283	1153	0
	6	7399	461	0	5997	0	0
	2	7815	1147	2247	6592	735	1825
NS7784	4	8970	717	526	6557	145	389
	6	7575	181	0	5614	0	0
	2	8136	2841	1601	6779	2455	370
ACA470	4	7968	2509	406	6790	2124	0
	6	7494	1552	0	5658	0	0
	2	6926	2633	325	7350	2989	146
ACA481	4	8522	1998	123	6156	1421	0
	6	7822	722	0	5965	0	0
DK7220	2	7525	3119	382	7608	3364	0
	4	8545	1912	0	6167	1256	0
	6	7699	923	0	5385	0	0
	2	6648	1541	1874	7508	1603	1554
NS7761	4	8375	814	379	6398	437	0
	6	6793	275	0	5309	0	0
P9946	2	4985	990	309	4803	533	0
	4	8397	589	111	6393	0	0
	6	7618	24	0	7157	0	0
MH7	2	7421	1565	1235	5521	1302	205
	4	6452	432	158	6065	293	0
	6	6309	140	0	5430	0	0