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ABSTRACT: Comparative studies on fatty acid and protein composition of the endosperm and embryo of
palmito (Euterpe edulis Martius) were conducted using gas-liquid chromatography and sodium dodecyl sul-
fate–polyacrylamide gel electrophoresis. On a dry weight basis, the embryo contained extremely lower amounts
of lipids and proteins than did the endosperm, which was associated with the scarce lipid and protein bodies
previously reported in axis and cotyledon. The fatty acid composition also exhibited differences between
both tissues: (I) the fatty acid diversity was greater in embryo than in endosperm; (II) embryo and endosperm
contained predominantly linoleic, palmitic, oleic and stearic acids even though the relative values were differ-
ent for each tissue. As compared to other palm species, the higher fatty acid unsaturation in Euterpe edulis
seed could be involved in the previously reported short longevity and recalcitrant behavior during storage.
Proteins of both tissues were heterogeneous in molecular mass. Some proteins were tissue-specific, but other
were common, among them a highly glycosylated protein which migrated at about 55 kDa. We hypothesize
that the latter, also reported in all previously studied palm species, is one of the proteins characterizing the
Arecaceae family.
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Introduction

Seed studies carried out in Phoenix dactylifera L.,
Washingtonia filifera (Lindl.) Wendl. and Elaeis
guineensis Jacq. show that the two areas of food reserves
in a palm seed are the massive, hard endosperm and the
small embryo (Alang et al., 1988; DeMason 1985; 1986;
1988; DeMason et al., 1983; 1989a, b; DeMason and
Thomson, 1981; Meier, 1958; Meier and Reid, 1982).

The stored reserves in palm endosperm are mannans, in
the thickened cell walls, and lipid, protein, and mineral
nutrients, in the cytoplasm. Lipids and proteins are in the
form of lipid and protein bodies, and minerals are stored
as phytin in the form of globoid crystal inside protein
bodies. In the palm embryo, stored reserves also consist
of lipids, proteins in the forms of lipid and protein bod-
ies, the latter including phytin globoid crystals.

Differing from those three palm species, Panza et
al. (2004) report that Euterpe edulis embryo cells have
scarce storage reserves and exhibit an active state, with
numerous mitochondria, rough endosperm reticulum
cisternae, and Golgi apparatus, indicating a strategy of
continuous development without the interposition, at
maturity, of a dry state. In addition, that study indicates
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that whole embryo with 85% water content constitutes
only 0.54% of the seed fresh weight, while that of the
endosperm with 48.2% water content constitutes ap-
proximately 99% of the seed fresh weight.

Euterpe edulis seeds are short-lived and have re-
calcitrant storage behavior (Andrade, 2001; De León,
1961; Graziano, 1982; Martins et al., 2000; Reis et al.,
1999), the latter feature differentiating this species from
Phoenix dactylifera and Washingtonia filifera, both with
orthodox seeds (Carpenter and Ream, 1976; Dickie et
al., 1992; Krigman, 1974; Nixon, 1964; Sento, 1972)
and also from Elaeis guineensis, in which seeds have
an intermediate behavior (Ellis et al., 1991).

A difficulty in the interpretation of the experimen-
tal results on recalcitrant seeds is the differential water
content between the embryo axis (and embryo) and the
storage tissues (Berjak et al., 1989). In this respect Panza
et al. (2007) demonstrate the need to study in separated
form the embryo of the endosperma in E. edulis seeds.

To date, triacylglicerol seed composition has been
studied only in two Arecaceae species, Elaeis guinensis
(Salunkhe and Desai, 1986) and Cocos nucifera
(Satyabalan, 1989). In both of them, the triacylglicerol
composition is quite comparable, containing predomi-
nantly lauric (12:0), myristic (14:0), and palmitic (16:0)
acids. Up to date, triacylglicerol composition of em-
bryo and endosperm separately has not been reported
for any palm species of Arecaceae.

Although palm endosperms are approximately 20%
protein by weight, there is very little work on the char-
acteristics of palm seed storage proteins. Previous stud-
ies, carried out by Chandra Sekhar and DeMason

(1988a, b; 1989; 1990), DeMason and Chandra Sekhar
(1990), and DeMason et al. (1985, 1989a) in Phoenix,
Washingtonia, and Cocos, show that proteins are het-
erogeneous in molecular mass and charge ranging from
12 to 67 kDa and 3 to 10 in pI values.  A number of
common proteins exist in those genera which include
both 7S and 11S globulins.  In the three genera, the
same authors have detected a highly glycosylated pro-
tein which migrates at about 55 kDa. They have also
detected some individual differences between the three
genera studied in relation to the relative quantities of
the 67 kDa -7S globulin and 35 kDa -11S globulin. More
recently García et al. (2005) determines in coconut that
the basic polypeptide of the 11S globulin, which mi-
grates at approximately 24 KDa, is glycosylated.

We have carried out a chemical study of the Euterpe
edulis endosperm and embryo in which fatty acid and
protein composition were analysed. This is the first
chemical study in an embryo of the Arecaceae family.
E. edulis is a tropical species occurring in a narrow range
of rain forest in the Southern and Southeastern Brazil,
Northeastern Argentina and Paraguay (Silva Matos and
Watkinson, 1998). Its economical value is related to the
production of “heart of palm”, i.e. the growing apical
bud surrounded by young leaves (Nodari and Guerra,
1986). Most of the time the plants are harvested before
they reach maturity and produce seeds, the only propa-
gation method of this species. The economical manage-
ment has been conducted in an essentially predatory way
and that represents a threat to the survival of this spe-
cies. This study constitutes part of a monographic treat-
ment on conservation of Euterpe edulis.

FIGURE 1. Euterpe edulis fruits

and seeds: A, mature fruits;

scale bar = 2 cm. B, seed

cleaned of pericarp, as seen

from the raphe: scale bar = 0.2

cm. C, longitudinal medial sec-

tion trough a seed showing en-

dosperm (en) and detached

embryo (em). Asterisk indicates

embryo position within the en-

dosperm; scale bar = 0.2 cm.
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Material and methods

Plant material

Mature fruits of Euterpe edulis Martius (Fig. 1A)
were harvested from trees growing in Parque Nacional
Iguazú, Provincia de Misiones Argentina, during the
month of August for three consecutive years (2001 to
2003), and shipped by expedited post to the Bank of
Germplasm of INTA, Castelar, Buenos Aires, Argen-
tina, where studies were conducted.

Lipids and proteins were determined for embryo
and endosperm tissues separately. For this purpose,
both embryos and endosperms were removed from the
seeds (Fig. 1C) and lyophilized.

Lipid extraction and fatty acid analysis

For fatty acid analysis, lyophilized and ground
endosperm and embryo tissues were transferred into
1.5 ml eppendorf tubes and total lipids were extracted
with chloroform – methanol mix using the procedure
described by Folch et al. (1957). Total lipid extracts
were dried and weighted, suspended in 2 ml of a fresh
solution of 10% KOH in ethanol and saponified dur-
ing 60 min at 80ºC using stopped glass tubes. Two ml
hexane was added and fatty acids were extracted by
shaking. The upper organic phase (non-saponifiable)
was discarded. The aqueous layer was acidified with
1.5 ml of concentrated HCl and fatty acids were ex-
tracted twice with 1.5 ml hexane. Extracts contain-
ing free fatty acids were dried under a nitrogen stream,
dissolved in 1.5 ml BF

3
 (10% in methanol) and 1.5

ml benzene and esterified by heating and shaking at
100ºC for 1 h. Fatty acid methyl esters were extracted
twice with hexane and washed with distilled water.
After washing, the organic phase was evaporated un-
der a nitrogen stream, re-dissolved in hexane, and
analyzed by gas-liquid chromatography. One μl of the
fatty acid methyl esters solution was injected into an
Omegawax X250 (Supelco Inc., Bellefonte, Pennsyl-
vania) capillary column (30 m x 0.25 mm, 0.25 μm
film) in a Hewlett Packard HP-6890 chromatograph
equipped with a flame ionization detector. The col-
umn temperature was programmed for a linear in-
crease of 3ºC/min from 175 to 230ºC. The chromato-
graphic peaks of fatty acid methyl esters were
identified by comparison of their retention times with
standards, under similar conditions.

Protein extraction and protein analysis

Total protein content was determined in triplicate
for each year’s collection (three years 2001-2003) by
the Kjeldahl’s method, using the value of 5.7 as conver-
sion factor. After lipid extraction, the dried pellet was
used to obtain different fractions of the major storage
proteins for quantification using bovine serum albumin
as standard (Bradford, 1976), as follows:

(I) To obtain water-soluble albumins, pellets were
re-suspended in 50 mM Tris-HCl, pH 8.3, 1 μM
benzamidine, 1 μM phenyl-methylsulfonyl fluoride in
the ratio of 10 μl/mg of sample. Samples were stirred
for 30 minutes, centrifuged for 10 minutes at 10,000 g
and the supernatant collected as soluble fractions.

(II) To obtain salt-soluble globulins, pellets after
low-salt extraction were re-suspended in 50 mM Tris-
HCl, 1.0 M NaCl, 1 μM benzamidine, 1 μM phenyl-
methylsulfonyl fluoride. After stirring for 60 minutes,
the samples were centrifuged for 10 minutes at 10.000
g and the supernatant collected as a high salt fraction.

(III) To obtain prolamins, pellets were re-sus-
pended in ethanol 70% at 65ºC, 1 μM benzamidine, 1
μM phenyl-methylsulfonyl fluoride. After stirring for
30 minutes, the samples were centrifuged for 10 min-
utes at 10.000 g and the supernatant collected as pro-
lamins fraction.

(IV) To obtain glutelins, pellets were re-suspended
in NaOH  0.1 M, 1 μM benzamidine, 1 μM phenyl-
methylsulfonyl fluoride. After stirring for 30 minutes,
the samples were centrifuged for 10 minutes at 10,000
g and the supernatant collected as glutelins fraction.

(V) The remaining proteins were obtained as fol-
lows: pellets after NaOH extraction were re-suspended
in 50 mM Tris-HCl, 2% sodium dodecyl sulfate. The
samples were stirred for 60 minutes, and then centri-
fuged for 10 minutes at 10,000 g. The supernatant was
collected as remainder fractions. This procedure was
repeated twice to ensure that all proteins were removed
from the ground material.

Polyacrylamide gel electrophoresis under denatur-
ation conditions was conducted according to Laemmli
(1970) with some modifications. Electrophoresis was
run in a linear gradient of acrylamide concentration (8-
15%) in a Mini Protean III system (Bio-Rad), at con-
stant voltage (130 V) for 90 min. Glycerol (5% v/v) was
added to both stacking and resolving gel solutions. For
analytical purposes, 40 μg proteins were loaded onto
each well. Low Range Molecular Weight calibration
stained kit (Bio-Rad) was used to estimate the molecu-
lar weight (MW) of the different proteins. Gels were
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stained with 0.1% (w/v) Coomasie Brilliant Blue R-250
solution, and then analyzed with a Bio-Rad GS-800
Imaging Calibrated Densitometer. Images were captured
and processed by Quantity One 1-D Analysis software.
For glycoprotein detection, gels were stained with the
periodate-Schiff reaction (Segrest and Jackson, 1972).

Results and Discussion

This is the first study on triacylglicerol and pro-
teins composition in an embryo of the Arecaceae fam-
ily. Previous studies were made on whole seeds. On this
respect, Grout et al. (1983) and Berjak et al. (1989) warn
on the difficulty of comparing groups of data in which
there are marked differences on size and water content
between both tissues. The difficulty is exacerbated in
Euterpe edulis where the whole embryo is minute (Fig.
1C) and constitutes only 0.54% of the seed’s fresh weight
(Panza et al., 2004).

Fatty acid analysis

In E. edulis endosperm, total lipids represented
around 0.45% of the total endosperm weight (dry weight
basis). In the embryo, lipids were only present in ex-
tremely low quantity. Unsaturated fatty acids were pre-
dominant, the sum of which was around 65% of total
fatty acids of endosperm and 60% of embryo.  Endosperm
and embryo contained predominantly linoleic (18:2ω6),
palmitic (C16:0), and oleic (C18:1ω9) acids even though
for each tissue the relative values were different (Fig. 2;
Table 1).  In embryo, α-linolenic (18:3 ω3) and
palmitoleic (16:1 ω7) acid and stearic (C18:0) acid con-
centrations were almost similar. In endosperm, the α-li-
nolenic and palmitoleic were minor fatty acids. The oleic
isomer 18:1 ω7 (vacenic), biosynthetically derived from
the palmitoleic acid, was also quantitatively important in
embryo, but it is a minor fatty acid in endosperm. Traces
of other fatty acids of 16, 20, 22, and 24 carbons were
also detected in both tissues (Fig. 2; Table 1).

FIGURE 2. Fatty acid composi-

tion of Euterpe edulis endosperm

and embryo as analyzed by gas-

liquid chromatography. The chro-

matographic peaks of fatty acid

methyl esters were identified by

comparison of their retention

times with those of standards

chromatographed under the

same conditions. A, endosperm;

B, embryo. Abbreviations: l, li-

noleic acid; ln, linolenic acid; m,

myristic acid; o, oleic acid; p,

palmitic acid; po, palmitoleic acid;

s, stearic acid; v, vacenic acid.
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Gurr (1980) reports that, even though fatty acids
tend to be characteristic of particular plant families, they
could vary widely among species. To date, the seed fatty
acid composition in palms is known for two species,
Elaeis guinensis and Cocos nucifera (Salunkhe and
Desai, 1986; Satyabalan, 1989). In those two species,
lauric, myristic, and palmitic (saturated) acids are pre-
dominant. Differing from those species both tissues in
E. edulis predominantly contained (as mentioned above)
linoleic, palmitic, and oleic acids. According to Miquel
and Browse (1995) 18-carbon unsaturated and polyun-
saturated fatty acids are generally predominant in An-
giosperms. In endosperm and embryo of Euterpe edulis
they represented around 55 and 48%, respectively. On
this respect, Staehelin and Newcomb (2000) identify
linoleic and linolenic acids (in addition to palmitic acid)
as the main fatty acids in plants frequently associated
with membrane construction.

Additionally, Euterpe edulis seeds are short-lived
(De León, 1961; Graziano, 1982) and have recalcitrant

storage behavior (Andrade, 2001; Martins et al., 2000;
Reis et al., 1999), differentiating this species from Phoe-
nix dactylifera and Washingtonia filifera, both with or-
thodox seeds (Carpenter and Ream, 1976; Dickie et al.,
1992; Krigman, 1974; Nixon, 1964; Sento, 1972) and
also from Elaeis guineensis, in which seeds have an in-
termediate behavior (Ellis et al., 1991). At present we
cannot establish in the E. edulis embryo the biochemi-
cal events responsible for its short longevity and recal-
citrant behavior, but it is known that polyunsaturated
fatty acids, the most oxygen sensitive molecules encoun-
tered in nature, are present in membranes (Spiteller,
2003). The high fatty acid unsaturation evokes changes
in membrane structures, commonly enhancing their flu-
idities. In addition, unsaturation also increases fatty acid
susceptibility to degradation as a consequence of the
double bond peroxidation. The short longevity found in
E. edulis seed (De León, 1961; Graziano, 1982), which
is only capable of initiating germination within a short
time following shedding, could be reflecting the rela-
tive high content of unsaturated acids found in E. edulis
seed (which represented around 65% and 60% of total
endosperm and embryo fatty acid, respectively). These
facts or some other property conferred by the higher
fatty acid unsaturation in Euterpe edulis seeds, as com-
pared to other palm species, would also contribute to
explain its behavior during storage.

The fatty acid spectrum was wider in embryo than
in endosperm, i.e. several 15- and 16-carbon fatty acids
were detected only in embryos, but were absent in en-
dosperm. Such diversity could be associated with the
more active biosynthetic mechanisms to elongate and
to desaturate fatty acids which are needed during ger-
mination.

Protein analysis

Up to now, very little is known about seed proteins
from palm seeds. In fact, Chandra Sekhar and DeMason
(1988a, b; 1989; 1990), DeMason and Chandra Sekhar
(1990), and DeMason et al. (1985; 1989a) electrophoreti-
cally characterize seed proteins in Phoenix, Washingtonia,
and Cocos, showing that they are heterogeneous in mo-
lecular mass and charge ranging from 12 to 67 kDa.  A
number of common proteins exist in all those genera
which include both 7S and 11S globulins.  The same au-
thors detect a highly glycosylated protein which migrates
at about 55 kDa in the three above mentioned genera.
They also detect some differences between the three gen-
era studied in relation to the relative quantities of the 67
kDa - 7S globulin and 35 kDa -11S globulin.

TABLE 1.

Percentages of the Euterpe edulis fatty acids.

Fatty acid Endosperm Embryo

14:0 3.4 0.8
15:0 0.4
16:0 23.1 * 24.0 *
16:1 ω7 0.8 4.1 *
16:2 0.9
16:3 0.4
18:0 6.3 * 4.9 *
18:1 ω 9 15.6 * 10.8 *
18:1 ω 7 1.5 5.3 *
18:2 ω 6 36.4 * 27.6 *
18:3 ω 3 1.5 4.8 *
20:1 ω 9 2.5 1.1
20:3 ω 3 2.3 1.3
22:1 2.0 1.3
22:5 0.7 1.1
24:1 1.2 0.4
Others 2.7 10.8

The sum of the most abundant fatty acids (*) represents 81.4%
and 81.5% of total endosperm and embryo fatty acids, re-
spectively. The “other” category corresponds to unidentifi-
able acids, present in very small quantities. Values are the
average of triplicate determinations.
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In Euterpe edulis total protein content, quantified
by the Bradford’s method, represented 5.39% and 2.46%
of the endosperm and embryo dry weight, respectively
(Table 2). Total protein endosperm content quantified
by the Kjeldahl’s method represented 5.4% of the en-
dosperm dry weight. Total soluble proteins were also
quantified for different fractions of both endosperm and
embryo, showing that the two major fractions were al-
bumins, globulins and sodium dodecyl sulphate-soluble
proteins for endosperm, and albumins and glutelins for
embryo (Table 2). The difference in protein quantity
correlates well with very small quantities of protein
bodies present in the embryo tissues (Panza et al., 2004),
consequently, we infer that the source of proteins in
embryos may also be various organelles and the or-
ganelle-free cytoplasm.

In E. edulis, endosperm proteins resolved into 13
main bands ranging between 14 and 141 kDa (Fig. 3A,
lane b) and embryo proteins resolved into 7 main bands
ranging from 17 to 45 kDa (Fig. 3A, lane c). Endosperm
and embryo had in common bands of approximately 17,
22, 25, 28, 35, and 40 kDa. Bands between 50 and 141
kDa, were detected clearly in the endosperm but not in
the embryo. Endosperm profile included both 67 kDa -
7S globulin and 35 kDa - 11S globulin that are present
in Phoenix, Washingtonia and Cocos (Chandra Sekhar
and DeMason, 1988a, b; 1989a; DeMason and Chandra
Sekhar, 1990).

Using the periodate-Schiff reaction (Fig. 3B), five
major glycosylated bands were detected in endosperm
of approximately 16, 25, 35, 50 and 55 kDa, and two
bands in embryo, of approximately 25 and 50 KDa. The
25 KDa bands, which are present in both tissues, would
correspond to cocosin, i.e. the basic component of the
11S globulin detected in coconut by García et al. (2005).

TABLE 2.

Protein fractions and total proteins of endosperm
and embryo of E. edulis.

Proteins Endosperm Embryo

Albumins 1.94 1.53
Globulins 1.03 0.34
Prolamins 0.00 0.04
Glutelins 0.42 0.55
Sodium dodecyl sulphate
soluble proteins 1.99 0.00
Total proteins (Bradford) 5.39 2.46

Total proteins (Kjeldahl) 5.40

Values are given as percentage of protein / total endosperm
dry weigth and protein / total embryo dry weigth, respectively.

The electrophoretic study of total soluble proteins
in Euterpe edulis showed a different profile for both en-
dosperm and embryo tissues (Fig. 3, lanes b and c). In
Phoenix, Washingtonia and Cocos, the electrophoretic
techniques show that the major seed proteins are not tis-
sue-specific; this correlates with the histochemical simi-
larity in the endosperm and embryo of these species with
proper quiescent tissues. In the three genera, cells store
abundant lipids and proteins in the form of lipid and pro-
tein bodies, the percentage of normal cell constituents
(cytoplasm, nucleus and other organelles) is very small,
and, at the transmission electron microscopy level, no ri-
bosomes or endoplasmic reticulum or endomembranes
are discernable in mature tissues (DeMason, 1986; 1988;
DeMason and Thomson, 1981; DeMason et al., 1983).

FIGURE 3. Sodium dodecyl sulphate polyacrylamide gel

electrophoresis analysis of Euterpe edulis endosperm

and embryo. For both gels: lane a = molecular weight

standards; lane b= endosperm soluble proteins; lane c =

embryo soluble proteins. A, gel was stained with 0.1%

(w/v) Coomassie Blue-R-250; B, gel was stained with

periodate-Schiff reaction (five major glycosylated en-

dosperm bands, of approximately 16, 25, 35, 50 and 55

kDa and two major glycosylated embryo bands, of ap-

proximately 25 and 50 KDa were observed).
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The 55 kDa glycosylated protein found in E. edulis
endosperm, is present, according to DeMason (personal
communication) not only in the endosperm of the three
previously studied species (Phoenix, Washingtonia and
Cocos) but also in all endosperm of other species she
has analyzed briefly in her lab, i.e. species of the genera
Calamus, Chamaedora, Caryota, Erythea and Syagrus.
Establishing if the 55 kDa protein constitutes a taxo-
nomic marker for the Arecaceae awaits further investi-
gation in other palm species.
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