61. Diversidad de herbáceas y coleópteros en sistemas silvopastoriles de Tierra del Fuego

Lencinas, M. V. 1, Martínez Pastur, G.1, Peri, P. L.1,2,3, Soler Esteban, R.1, Ivancich, H.1, Cellini, J. M.4, Barrera, M.4

Resumen

Los bosques de Nothofagus antarctica (ñire) en Patagonia Sur conforman un paisaje donde coexisten con bosques de otros Nothofagus y pastizales naturales, siendo utilizados bajo esquemas de uso silvopastoril extensivo. Sin bien el sotobosque de dichos sistemas ya ha sido estudiado, la diversidad vegetal y entomológica ha merecido poca atención. El objetivo de este estudio fue analizar y comparar la diversidad de plantas y coleópteros en bosques de N. antarctica y pastizales en paisajes naturales de Tierra del Fuego distribuidos en un gradiente geográfico. Se trabajó en 105 sitios homogéneamente distribuidos en cuatro zonas (norte, centro, este y sur), en los que se realizaron censos florísticos y se determinó la cobertura por especie. Asimismo, en 55 de ellos se realizaron muestreos de coleópteros mediante pit-falls activas durante una semana, contabilizándose especies-morfoespecies e individuos. Se observaron 165 especies de plantas y 66 de coleópteros: 38-44% respectivamente fueron comunes a ñirantales y pastizales, 53-50% fueron exclusivas de pastizales y 8-6% exclusivas de ñirantales. Los ordenamientos separaron bosques de pastizales y zonas geográficas, siendo norte, centro y este semejantes en diversidad florística pero no en coleópteros. La zona sur compartió poca diversidad florística y de coleópteros con otras zonas. Estas diferencias deberían ser consideradas al analizar el impacto de sistemas silvopastoriles sobre la conservación de especies.

Palabras clave: bosque nativo; cobertura vegetal; entomofauna; gradiente geográfico.

Herbaceous and coleopteron diversity in silvopastoral systems of Tierra del Fuego

Abstract

Nothofagus antarctica (ñire) forests of Southern Patagonia conform a landscape where this species coexists with other Nothofagus as well as with natural grasslands. This landscape is usually used as an extensive silvopastoril system. Although N. antarctica understory has been studied, vegetation and insect diversity have received little attention. The aim of this work was to analyze and compare vegetation and coleopteron diversity in N. antarctica forests and grasslands, in a geographic gradient of natural landscapes in Tierra del Fuego. In 105 sites homogeneously distributed in four zones (north, center, east and south), floristic inventories were carried out, and each species cover was determined. Moreover, beetle samples were collected in 55 of these sites, by one-week active pit-fall trap-set, where individuals were identified and counted. There were observed 165 plant and 66 coleopteron species: 38%-44% were found in ñire forests and grasslands respectively, 53%-50% were exclusively found in grasslands, and 8%-6% were exclusively found in ñire forests. Ordinations showed splits between forests and grasslands, and among geographic zones, being north, center and east more similar in vegetation but not in coleopteron diversity. South zone shared few vegetation and coleopteron diversity with other zones. Different patterns of diversity must be considered when impacts over species conservation due to silvopastoril system implementation are analyzed.

Keywords: entomofauna; geographic gradient; landscape; native forests; vegetation cover.

¹CONICET. Centro Austral de Investigaciones Científicas, Av. Houssay 200 - (9410) Ushuaia, Tierra del Fuego. vlencinas@cadic-conicet. gob.ar. ²INTA EEA Santa Cruz. ³Universidad Nacional de La Patagonia Austral. ⁴ Universidad Nacional de La Plata

Introducción

Los bosques de Nothofagus antarctica (ñire) en Patagonia Sur forman parte de un paisaje donde coexisten con otros bosques del género Nothofagus y con pastizales naturales. Esta matriz ñire-pastizal constituye un sistema ampliamente utilizado bajo un esquema de uso silvopastoril extensivo, para la cría de ganado ovino o vacuno (Peri, 2005). Sin embargo, se desconoce el impacto de esta actividad sobre el conjunto de componentes de estos ecosistemas, tales como la vegetación herbácea o los insectos. Sin bien algunos aspectos del sotobosque en estos sistemas silvopastoriles y pastizales ya han sido estudiados (ej., producción de materia seca o crecimiento luego del corte; Peri, 2006), la diversidad del componente herbáceo y de su entomofauna han merecido poca atención. La biodiversidad propia de cada ecosistema es lo que le permite sostener sus funciones en

el tiempo, las cuales pueden estar muy alteradas en sistemas transformados. Además, es un legado para las generaciones futuras, por lo que su conservación constituye un objetivo importante en la generación de estrategias de manejo sustentables para los ecosistemas nativos, tanto bosques como pastizales. El objetivo fue analizar y comparar la diversidad de plantas vasculares herbáceas y de coleópteros en ñirantales y pastizales en un gradiente geográfico (latitudinal y longitudinal) de paisajes naturales en Tierra del Fuego. Este conocimiento permitiría evaluar la influencia de la aplicación de sistemas silvopastoriles sobre las comunidades de herbáceas y de coleópteros, la existencia de indicadores de impacto entre los organismos estudiados, así como proponer estrategias para la conservación de la biodiversidad nativa de estos ambientes.

Materiales y Métodos

Se realizaron 105 censos florísticos en ñirantales y pastizales naturales (45 y 60 sitios, respectivamente), tanto sin impactos evidentes como pastoreados, homogéneamente distribuidos en cuatro zonas de Tierra del Fuego (norte, centro, este y sur) (Ilustración 1), en los que se determinó la cobertura de cada planta por relevamientos según la propuesta de Kent y Coker (1992). En 55 de estos sitios (24 ñirantales y 31 pastizales) también se realizaron muestreos de coleópteros activos a nivel del suelo mediante 5

trampas pit-fall en cada sitio, que permanecieron activas durante una semana (enero-febrero). Cada trampa (12 cm de diámetro y 14 cm de profundidad) contuvo 300 ml de agua como agente de retención y detergente comercial para romper la tensión superficial del agua. Las muestras se determinaron a la menor categoría taxonómica posible, y cuando no se llegó a especie se asignaron a morfoespecies-mf, siguiendo a Oliver y Beattie (1993). Se contaron los individuos de cada taxón.

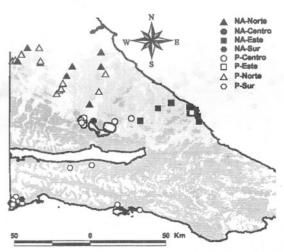


Ilustración 1. Ubicación de los censos realizados en bosques de ñire-NA y pastizales-P de Tierra del Fuego. Los colores del mapa indican el tipo principal de matriz en el que estuvieron inmersos (blanco para pastizales, gris claro para bosques de ñire y gris oscuro para otros tipos de bosque).

Los datos de abundancia relativa (cobertura o cantidad de individuos) se analizaron mediante escalamientos no-métricos multidimensionales-NMS (Manly, 1994), con medición de la distancia según el método de Sörensen y 250 iteraciones, y clasifica-

ciones de los muestreo según su fisonomía (ñirantal y pastizal) combinada con grado de uso (primario y pastoreado) y ubicación geográfica (zonas norte, centro, este y sur), usando el programa PC-Ord (McCune y Mefford, 1999).

Resultados

Se relevaron 165 especies de plantas (Anexo 1), 24 de las cuales fueron exóticas. De esta riqueza, el 38% (63 especies) fue común a ñirantales y pastizales, el 53% (88 especies) fue exclusivo de pastizales y el 8% (14 especies) fue exclusivo de ñirantales. Las especies exóticas fueron más comunes en los pastizales (23 especies), con casi el 40% de las mismas presentes exclusivamente en ellos (10 especies), mientras que en los ñirantales se observaron 14 especies exóticas, una sola de las cuales se encontró exclusivamente en este ambiente (Bellis perennis). Asimismo, se colectaron 66 especies-mf de coleópteros (Anexo 2), de los cuales el 44% (19 especies y 10 mf) fue común a ñirantales y pastizales, el 50% (7 especies y 26 mf) fue exclusivo de pastizales, y el 6% (2 especies y 2 mf) fue exclusivo de ñirantales.

Los análisis de ordenamientos mostraron distintos

agrupamientos para las comunidades de plantas y de coleópteros tanto en ñirantales como en pastizales. así como entre zonas geográficas de Tierra del Fuego (Ilustración 2). Las comunidades de plantas de pastizales de las zonas norte, centro y este mostraron mayores similitudes entre sí, y menos similitud con los ñirantales de las mismas zonas, los cuales también fueron similares entre sí. Los ñirantales y pastizales del sur también presentaron pocas semejanzas entre sí. Los agrupamientos basados en las comunidades de coleópteros presentaron pocas semejanzas entre pastizales y ñirantales de todas las zonas, existiendo cierto grado de semejanza entre pastizales y ñirantales de la zona este. Asimismo, las comunidades de coleópteros también fueron poco semejantes entre zonas, aunque la zona este mostró cierta superposición con el centro y el sur.

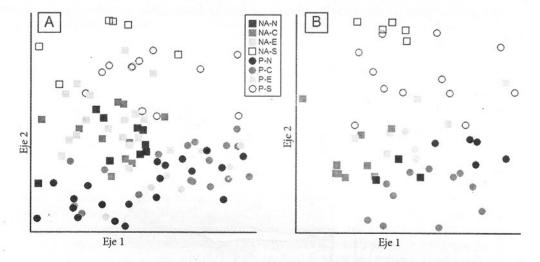


Ilustración 2. Ordenamientos para los censos de plantas vasculares (A) y de coleópteros (B). NA (cuadrados): \bar{n} irantal, P (círculos): pastizal, N (negro): zona norte, C (gris oscuro): zona centro, E (gris claro): zona este, S (blanco): zona sur.

Anexo 1. Especies de plantas vasculares observadas en los censos florísticos de ñirantales (NA) y pastizales (P). El asterisco (*) señala a las especies exóticas.

Especie	Código NA I		P	Especie	Código NA		P	Especie	Código NA	P
Acaena magellanica	ACMA	Х	Х	Phleum alpinum	PHAL	Х	X	Myosotis arvensis*	MYAR	Х
Acaena ovalifolia	ACOV	Х	X	Poa annua*	POAN	Х	X	Nanodea muscosa	NAMU	X
Acaena pinnatifida	ACPI	Х	X	Poa pratensis*	POPR	Х	X	Nassauvia darwinii	NADA	X
Achillea millefolium*	ACMI	Х	X	Sisyrinchium patagonicum	SIPA	Х	X	Oreomyrrhis hookeri	ORHO	Χ
Adenocaulon chilense	ADCH	Х	X	Trisetum spicatum	TRSP	Χ	X	Perezia pilifera	PEPI	Х
Berberis buxifolia	BEBU	Х	X	Uncinia lechleriana	UNLE	Χ	X	Perezia recurvata	PERE	X
Capsella bursa- pastoris*	CABU	X	X	Codonorchis lessonii	COLE	Х	X	Pernettya mucronata	PEMU	Х
Cardamine glacialis	CAGL	X	X	Blechnum penna- marina	BLPE	X	X	Plantago barbata	PLBA	X
Cerastium arvense	CEAR	X	X	Bellis perennis*	BEPE	X		Primula magellanica	PRMA	X
Cerastium fontanum*	CEFO	Х	X	Calceolaria biflora	CABI	Х		Ranunculus fuegianus	RAFU	Х
Chiliotrichum diffusum	CHDI	Х	X	Calceolaria uniflora	CAUN	Χ		Ranunculus hydrophilus	RAHY	Х
Cotula scariosa	COSC	X	X	Dysopsis glechomoides	DYGL	Х		Ranunculus peduncularis	RAPE	Х
Draba magellanica	DRMA	Х	X	Galium fuegianum	GAFU	Χ		Ranunculus repens	RARE	Х
Drymis winterii	DRWI	Х	X	Hieracium antarcticum	HIAN	Х		Ranunculus sericocephalus	RASE	Х
Erigeron myosotis	ERMY	Х	X	Maytenus disticha	MADI	Х		Ranunculus uniflorus	RAUN	X
Galium aparine	GAAP	Х	X	Osmorhiza chilensis	OSCH	Х		Rumex crispus*	RUCR	X
Gamochaeta spiciformis	GASP	Х	X	Osmorhiza depauperata	OSDE	Х		Sagina procumbens*	SAPR	X
Gentianella magellanica	GEMA	Х	X	Ranunculus biternatus	RABI	Х		Senecio patagonicus	SEPA	X
Geum magellanicum	GEMA	Х	X	Viola magellanica	VOMA	Х		Senecio smithii	SESM	Х
Gunnera magellanica	GUMA	X	X	Viola reicheii	VIRE	X		Senecio tricuspidatus	SETR	X
Hieracium pilosilla*	HIPI	X	X	Gavilea lutea	GALU	X		Stellaria debilis	STDE	X
Leucanthemum vulgare	LEVU	X	X	Cystopteris fragilis	CYFR	X		Trifolium dubium*	TRDU	Х
Macrachaenium gracile	MAGR	Х	X	Acaena lucida	ACLU		Х	Urtica magellanica	URMA	X
Nothofagus antarctica	NOAN	Х	X	Acaena pumila	ACPU		X	Vicia bijuga	VIBI	X
Nothofagus pumilio	NOPU	Х	X	Acaena tenera	ACTE		X	Aira praecox*	AIPR	X

Oxalis enneaphylla	OXEN	Х	Χ	Agoseris coronopifolium	AGCO	X	Agropyron pubiflorum	AGPU	X
Pernettya pumila	PEPU	Х	Х	Anemone multifida	ANMU	X	Agrostis capillaris*	AGCA	X
Pratia repens	PRRE	Х	Χ	Arenaria serpens	ARSE	X	Agrostis castellana*	AGCS	X
Ranunculus maclovianus	RAMA	X	X	Armeria maritima	ARMA	X	Agrostis inconspicua	AGIN	X
Ribes magellanicum	RIMA	X	X	Aster vahlii	ASVA	X	Agrostis magellanica	AGMA	X
Rubus geoides	RUGE	X	X	Azorella caespitosa	AZCA	X	Agrostis meyenii	AGME	X
Rumex acetosella*	RUAC	Χ	X	Azorella filamentosa	AZFI	X	Alopecurus geniculatus	ALGE	X
Schizeilema ranunculus	SCRA	Χ	Χ	Azorella fueguiana	AZFU	X	Calamagrostis stricta	CAST	X
Senecio acanthifolius	SEAC	X	X	Azorella trifurcata	AZTR	X	Carex atropicta	CAAT	X
Senecio magellanicus	SEMA	Χ	Χ	Azorella lycopodioides	AZLY	X	Carex curta	CACU	X
Stellaria media*	STME	X	X	Baccharis magellanica	BAMA	X	Carex decidua	CADE	X
Taraxacum gillesii	TAGI	Χ	Χ	Berberis empetrifolia	BEEM	X	Carex fuscula	CAFU	X
Taraxacum officinale*	TAOF	X	X	Bolax gummifera	BOGU	X	Carex gayana	CAGA	X
Thlaspi magellanicum	THMA	X	X	Caltha sagitata	CASA	X	Carex macloviana	CAMA	X
Trifolium repens*	TRRE	X	X	Colobanthus quitensis	COQU	X	Carex magellanica	CAMG	X
Veronica serpyllifolia*	VESE	X	X	Draba funiculosa	DRFU	X	Carex subantarctica	CASU	X
Vicia magellanica	VIMA	X	X	Drapetes muscosus	DRMU	X	Deschampsia kingii	DEKI	X
Agrostis perennans	AGPE	X	X	Embotrium coccineum	EMCO	X	Festuca cirrosa	FECI	X
Alopecurus magellanicus	ALMA	X	X	Empetrum rubrum	EMRU	X	Festuca gracillima	FEGR	X
Bromus unioloides	BRUN	X	X	Epilobium australe	EPAU	X	Hierochloë redolens	HIRE	X
Dactylis glomerata*	DAGL	X	X	Erigeron patagonicus	ERPA	X	Juncus scheuzerioides	JUSC	X
Deschampsia antarctica	DEAN	X	X	Euphrasia antarctica	EUAN	X	Luzula chilensis	LUCH	X
Deschampsia flexuosa	DEFL	X	X	Galium antarcticum	GAAN	X	Marsippospermum grandiflorum	MAGR	X
Elymus agropyroides	ELAG	X	X	Gamochaeta nivalis	GANI	X	X Phleum pratense*		X
Festuca contracta	FECO	X	X	Gentiana postrata	GEPO	X	Poa alopecurus	POAL	X
Festuca magellanica	FEMA	X	X	Geranium magellanicum	GRMA	X	Poa nemoralis*	PONE	X
Holcus lanatus*	HOLA	X	X	Geranium sessiliflorum	GESE	X	Stipa rariflora	STRA	X
Hordeum comosum	носо	X	Х	Hieracium flagellare*	HIFL	X	Triglochin concinna	TRCO	X
Luzula alopecurus	LUAL	X	X	Hypochoeris arenaria	HYAR	X	Triglochin palustris	TRPA	X
							Lycopodium		

Anexo 2. Especies y morfoespecies de coleópteros observados en los muestreos entomofaunísticos de ñirantales (NA) y pastizales (P).

Especie	NA	P	Especie	NA	P	Morfoes- pecies	NA	P	Morfoes- pecies	NA	P	Morfoes- pecies	NA	P
Abropus carnifex	Х	Х	Puranius nigrinus	X	X	C9	X	X	C33		Х	C85		Х
Antarctobius hyadesii	Х	Χ	Sericoides faminaei	Х	X	C23	Х	Х	C34		Х	C106		Х
Antarctobius lacunosus	X	Χ	Sericoides livida	X	X	C35	X	X	C46	1	X	C108		X
Apion sp.	X	X	Sericoides testacea	X	X	C56	X	X	C48		X	C111		Х
Bembidini- Nothaphiellus	X	X	Trechisibus antarcticus	X	X	C60	Х	X	C55		X	C112		Х
Ceroglossus suturalis	X	X	Aegorhinus vitulus	X		C72	X	X	C57		Х	C113		Х
Cylydrorhinus angulatus	Х	Х	Cascellius gravessi	Х		C74	Х	X	C64		X	C120		Х
Cylydrorhinus caudiculatus	Х	Χ.	Anomophtalmus insolitus		X	C80	X	X	C65		X	C125		X
Dasydema hirtella	Х	Х	Antarctonomus complanatus		X	C105	X	X	C66		X	C135		X
Hydromedion anomocerum	X	X	Falklandius antarcticus		X	C110	X	X	C67		X	C136		Х
Metius annulicornis	X	X	Peltoborum sp.		X	C61	X		C73		X			_
Metius malachiticus	X	X	Sericoides glacialis		Х	C68	X		C81		X			
Migadopus latus	Х	X	Sericoides multicolor		Х	C13		X	C83		X			
Neopraocis reflexicollis	Х	Х	Trechini		Х	C16		X	C84		X			

Discusión

Tal como en otros estudios de paisaje, la diversidad de herbáceas y coleópteros fue mayor en pastizales (+monocotiledóneas) que en ñirantales (+dicotiledóneas) aledaños (Lencinas et al., 2008a y 2008b). Entre las exóticas, la mayoría correspondió a especies introducidas desde Europa, actualmente naturalizadas en comunidades disturbadas y no disturbadas gracias a su habilidad para dispersarse y aclimatarse. Otras exóticas dominaron en suelos erosionados (ej., por ganado), mientras que otras fueron incorporadas como mejoradoras de la vegetación natural para alimentación del ganado, tanto en pastizales como en ñirantales. En cuanto a los coleópteros, en pastizales dominaron curculiónidos (usualmente asociados a gramíneas) y carábidos (predadores), mientras que en ñirantales fueron más comunes los generalistas (curculiónidos, carábidos, estafilínidos y escarabeidos). Cabe mencionar que, mientras las comunidades de insectos son relativamente bien conocidas en los bosques boreales (Martikainen et al.,

2000; Niemelä, 1990), esto no ocurre en los bosques australes (Lanfranco, 1977; Spagarino *et al.*, 2001). Así, es muy escasa la información disponible sobre distribución geográfica de cada especie, comunidades vegetales a las que están asociadas, autecología, requerimientos de hábitat o importancia económica. Este estudio podría mejorarse incorporando nuevos sitios de muestreo y otros análisis estadísticos para mejorar la evaluación de las diferencias entre las zonas geográficas estudiadas.

Las especies exclusivas (88 plantas+33 coleópteros en pastizales, y 14 plantas+4 coleópteros en ñirantales) son las potencialmente útiles como indicadoras de impacto, lo cual debería explorarse con nuevos estudios referidos a fidelidad con el hábitat, abundancia y facilidad en la identificación y el muestreo, así como correlación entre su presencia o abundancia y los impactos que se pretenda caracterizar (naturales o antrópicos, por manejo forestal, incendios, silvopastoril o ganadería). Los coleópteros suelen ser

buenos indicadores de impacto al nivel de paisaje (Lewis y Whitfield, 1999), gracias a que su abundancia, riqueza específica y ocurrencia son altamente sensibles a variaciones en la disponibilidad local de los recursos (Werner y Raffa, 2000). En este senti-

do, las especies generalistas tienen poca importancia para el diseño de estrategias, mientras que aquellas con alta especificidad en sus requerimientos adquieren mayor importancia.

Conclusiones

Este estudio sobre vegetación y fauna de coleópteros en bosques de ñire y pastizales de Tierra del Fuego permitió observar semejanzas entre las comunidades vegetales y las de coleópteros, que parecerían ser mayores entre las zonas norte, centro y este. Los estudios sobre los sistemas silvopastoriles deberían considerar estas posibles diferencias geográficas. Asimismo, la variabilidad entre muestreos sugiere la necesidad de aumentar el número de muestras en paisajes con diversidad de microambientes.

Referencias

- Kent M., Coker P. 1992. Vegetation description and analysis: a practical approach. CRC Press-Belhaven Press, London, United Kingdom. 363 pp.
- Lanfranco, D. 1977. Entomofauna asociada a los bosques de Nothofagus pumilio en la región de Magallanes. 1º parte: Monte Alto (Río Rubens, Última Esperanza). An. Inst. Pat. 8: 319-346.
- Lencinas, M. V., Martínez Pastur G., Rivero P., Busso C. 2008a. Conservation value of timber quality versus associated non-timber quality stands for understory diversity in Nothofagus forests. Biodiv. Conserv. 17 (11): 2579-2597.
- Lencinas, M. V., Martínez Pastur G., Anderson C. B., Busso C. 2008b. The value of timber quality forests for insect conservation on Tierra del Fuego Island compared to associated non-timber quality stands. J. Ins. Conserv. 12: 461-475.
- Lewis, C. N., Whitfield J. B. 1999. Braconid wasp (Hymenoptera: Braconidae) diversity in forest plots under different silvicultural methods. Environ. Entomol. 28(6): 986-997.
- Manly, B. 1994. Multivariate statistical methods. A primer. Chapman & Hall, eds. Londres. Sda. ed. 225 p. Martikainen, P., Siitonen J., Punttila P., Kaila L., Rauh J. 2000. Species richness of Coleoptera in mature managed and old-growth boreal forests in southern Finland. Biol. Conserv. 94: 199-209.
- McCune, B., Mefford M. J. 1999. Multivariate analysis of ecological data. Version 4.0. MjM software. Gleneden Beach, Oregon, USA.
- Niemelä, J. 1990. Habitat distribution of carabid beetles in Tierra del Fuego, South America. Entomol. Fenn. 29(VI): 3-16.
- Oliver, I., Beattie, A. J. 1993. A possible method for the rapid assessment of biodiversity. Conserv. Biol. 7(3): 562-568.
- Peri, P. L. 2005. Patagonia Sur Sistemas silvopastoriles en ñirantales. IDIA XXI 5(8): 255-259.
- Peri, P. L. 2006. Sistemas Silvopastoriles en bosques nativos de ñire de Patagonia Sur. SAGPyA Forestal 38: 1-7. Spagarino, C., Martínez Pastur G., Peri P. 2001. Changes in Nothofagus pumilio forest biodiversity during the
- forest management cycle: 1. Insects. Biodiv. Conserv. 10: 2077-2092.
- Werner, S. M., Raffa K. F. 2000. Effects of forest management practices on the diversity of ground-occurring beetles in mixed northern hardwood forests of the Great Lakes Region. For. Ecol. Manage. 139: 135-155.