Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros e Institutos de InvestigaciónCIRN. Centro de Investigaciones de Recursos NaturalesInstituto de Recursos BiológicosArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros e Institutos de Investigación
  • CIRN. Centro de Investigaciones de Recursos Naturales
  • Instituto de Recursos Biológicos
  • Artículos científicos
  • View Item

Carotenoids gene markers for sweetpotato (Ipomoea batatas L. Lam): applications in genetic mapping, diversity evaluation and cross‑species transference

Abstract
Carotenoids play essential biological roles in plants, and genes involved in the carotenoid biosynthesis pathway are evolutionarily conserved. Orange sweetpotato is an important source of β-carotene, a precursor of vitamin A. In spite of this, only a few research studies have focussed on the molecular aspects of carotenoid genes regarding their specific sequence and structure. In this study, we used published carotenoid gene sequences from Ipomoea and [ver mas...]
Carotenoids play essential biological roles in plants, and genes involved in the carotenoid biosynthesis pathway are evolutionarily conserved. Orange sweetpotato is an important source of β-carotene, a precursor of vitamin A. In spite of this, only a few research studies have focussed on the molecular aspects of carotenoid genes regarding their specific sequence and structure. In this study, we used published carotenoid gene sequences from Ipomoea and other species for “exon-primed intron-crossing” approaches. Fifteen pairs of primers representing six carotenoid genes were designed for different introns, eleven of which amplified scorable and reproducible alleles. The sequence of PCR products showed high homology to the original ones. Moreover, the structure and sequence of the introns and exons from five carotenoid structural genes were partially defined. Intron length polymorphism and intron single nucleotide polymorphisms were detected in amplified sequences. Marker dosages and allelic segregations were analysed in a mapping population. The developed markers were evaluated in a set of Ipomoeas batatas accessions so as to analyse genetic diversity and conservation applicability. Using CG strategy combined with EPIC-PCR technique, we developed carotenoid gene markers in sweetpotato. We reported the first set of polymorphic Candidate Gene markers for I. batatas, and demonstrated transferability in seven wild Ipomoea species. We described the sequence and structure of carotenoid genes and introduced new information about genomic constitution and allele dosage. [Cerrar]
Thumbnail
Author
Arizio, Carla Marcela;   Costa Tártara, Sabrina María;   Manifesto, Maria Marcela;  
Fuente
Molecular genetics and genomics 289 (2) : 237–251. (April 2014)
Date
2014-04
Editorial
Springer
ISSN
1617-4615
1617-4623 (Online)
URI
http://hdl.handle.net/20.500.12123/3377
https://link.springer.com/article/10.1007%2Fs00438-013-0803-3#citeas
DOI
https://doi.org/10.1007/s00438-013-0803-3
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Ipomoea Batatas; Marcadores Genéticos; Genetic Markers; Carotenoides; Polyploidy; Poliploidia; Mapas Genéticos; Genetic Maps; Carotenoids; Camote (Planta); Transferability;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record