Ver ítem
- xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Mendoza - San JuanEEA La ConsultaArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
- Inicio
- Centros Regionales y EEAs
- Centro Regional Mendoza - San Juan
- EEA La Consulta
- Artículos científicos
- Ver ítem
Comparative Analysis of VOC Profiles in Populus deltoides cv. Harvard I-63/51 and P. × canadensis cv. Conti 12 Poplars Attacked by Megaplatypus mutatus
Resumen
Megaplatypus mutatus, a major poplar pest in South America, tunnels into the xylem, weakening trunks and reducing wood quality. Volatile organic compounds (VOCs) are key mediators of plant–insect interactions and may reflect genotype-specific defence strategies. This study analysed VOC profiles of young and adult Populus deltoides cv. Harvard and P. × canadensis cv. Conti 12 under natural M. mutatus infestation. Gas chromatography–mass spectrometry
[ver mas...]
Megaplatypus mutatus, a major poplar pest in South America, tunnels into the xylem, weakening trunks and reducing wood quality. Volatile organic compounds (VOCs) are key mediators of plant–insect interactions and may reflect genotype-specific defence strategies. This study analysed VOC profiles of young and adult Populus deltoides cv. Harvard and P. × canadensis cv. Conti 12 under natural M. mutatus infestation. Gas chromatography–mass spectrometry putatively annotated 31 VOCs, including green leaf volatiles (GLVs), pentyl leaf volatiles (PLVs), terpenes, alcohols, aromatics and phenolics, 12 of which, to our knowledge, have not been previously reported in Populus VOC profiles. Harvard trees showed ~14.5-fold higher total VOC abundance than Conti trees. In Conti, constitutive VOC emissions remained stable regardless of infestation status or age. In contrast, under infestation, Harvard trees emitted10-fold higher constitutive VOCs than non-infested Harvard trees and ~52-fold higher than Conti, a pattern consistent with increased defensive activity. GLVs and PLVs relatively dominated both genotypes, although Harvard showed higher emissions. Terpenes were not detected in young Conti trees under our analytical conditions but were abundant and diverse in infested Harvard trees, which may indicate a stronger terpene-associated response in this clone. Several compounds were detected only under specific genotype–condition combinations in our dataset and therefore represent candidate volatiles for future behavioural and functional studies. These results are consistent with differences in VOC emission patterns between genotypes and age classes, improve our understanding of putative chemical cues in the interaction between Populus and M. mutatus, and provide a basis for future work towards sustainable pest management strategies
[Cerrar]

Autor
Arancibia, Celeste;
Mitjans, Laura;
Bertoldi, Maria Victoria;
Morales Sanfurgo, Hugo Andres;
Gantuz, Magdalena;
Bolcato, Leonardo;
Piccoli, Patricia Noemí;
Naves, Natalia S.;
Bustamante, Juan Alberto;
Masuelli, Ricardo Williams;
Fuente
Stresses 6 (1) : 6. (January 2026)
Fecha
2026-01
Editorial
MDPI
ISSN
2673-7140
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Derechos de acceso
Abierto
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)


