Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BarrowArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Sur
  • EEA Barrow
  • Artículos científicos
  • View Item

Sampling scheme optimization to map soil depth to petrocalcic horizon at field scale

Abstract
Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method [ver mas...]
Soil depth has played a key role in the development of soil survey, implementation of soil-specific management and validation of hydrological models. Generally, soil depth at field scale is difficult to map due to complex interactions of factors of soil formation at field scale. As a result, the conventional sampling schemes to map soil depth are generally laborious, time consuming and expensive. In this study, we presented, tested and evaluated a method to optimize the sampling scheme to map soil depth to petrocalcic horizon at field scale. The method was tested with real data at four agricultural fields localized in the southeast Pampas plain of Argentina. The purpose of the method was to minimize the sample dataset size to map soil depth to petrocalcic horizon based on ordinary cokriging, five calibration sample sizes (returned by Conditioned Latin hypercube –cLHS-), and apparent electrical conductivity (ECa) or elevation as variables of auxiliary information. The results suggest that (i) only 30% of samples collected on a 30-m grid are required to provide high prediction accuracy (R2 > 0.95) to map soil depth to petrocalcic horizon; (ii) an independent validation dataset based on 50% of the samples on a 30-m grid is adequate to validate the most realistic accuracy estimate; and (iii) ECa and elevation, as variables of auxiliary information, are sufficient to map soil depth to petrocalcic horizon. The method proposed provides a significant improvement over conventional to map soil depth and allows reducing cost, time and field labour. Extrapolation of the results to other areas needs to be tested. [Cerrar]
Thumbnail
Author
Domenech, Marisa Beatriz;   Castro Franco, Mauricio;   Costa, Jose Luis;   Amiotti, Nilda Mabel;  
Fuente
Geoderma 290 : 75-82. (March 2017)
Date
2017-03-15
ISSN
0016-7061
URI
https://www.sciencedirect.com/science/article/pii/S0016706116310096#!
http://hdl.handle.net/20.500.12123/2308
DOI
https://doi.org/10.1016/j.geoderma.2016.12.012
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Suelo; Soil; Horizontes del Suelo; Soil Horizons; Hidrología; Hydrology; Profundidad del Suelo; Horizonte Petrocálcico;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record