Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • español 
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires SurEEA BarrowArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Sur
  • EEA Barrow
  • Artículos científicos
  • Ver ítem

A pedometric technique to delimitate soil-specific zones at field scale

Resumen
Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to develop pedometric techniques that allow an efficient combination of soil survey information and high-resolution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal components [ver mas...]
Delimitation of soil types within a farm field is key for site-specific crop management. An alternative to this, is to develop pedometric techniques that allow an efficient combination of soil survey information and high-resolution terrain attribute data. The aim of this study was to present and evaluate a pedometric technique to delimit soil-specific zones at field scale by coupled Random forest, fuzzy k-means clustering and spatial principal components algorithms (RF-KM-sPCA) and by using information from soil surveys and terrain attributes derived from a digital elevation model. The protocol involves three-steps: 1) automatic classification of small (20x20m) spatial units (SU) using the knowledge of the soil map units present in the farm landscape, 2) aggregation of SUM at farm scale and 3) validation of soil-specific zones. For the first step, we used the random forest algorithm with 10 terrain attributes. For the second step, KM-sPCA algorithms were used to cluster within field SU accounting for autocorrelation. For the third step, apparent soil electrical conductivity and yield maps was used to validate the delimitation of soil-specific zones. This technique produced more contiguous zones than other cluster methods which do not use spatiality. Six farm fields with highly differences in soils were partitioned by the proposed pedometric strategy. Apparent soil electrical conductivity and yield maps present significant differences among zones in all experimental fields. This analytic strategy, based in easy-to-obtain data, could be used to improve precision agricultural managements. [Cerrar]
Thumbnail
Autor
Castro Franco, Mauricio;   Córdoba, Mariano Augusto;   Balzarini, Mónica Graciela;   Costa, Jose Luis;  
Fuente
Geoderma 322 : 101-111. (July 2018)
Fecha
2018-07
ISSN
0016-7061
URI
http://hdl.handle.net/20.500.12123/2130
https://www.sciencedirect.com/science/article/pii/S0016706117302884
DOI
https://doi.org/10.1016/j.geoderma.2018.02.034
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Suelo; Soil; Agricultura de Precisión; Precision Agriculture; Manejo del Cultivo; Crop Management; Reconocimiento de Suelos; Soil Surveys;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem