ERNESTO HECTOR CRECHI

PRODUÇÃO, CRESCIMENTO E SOBREVIVÊNCIA DE Araucaria angustifolia (Bert.) O. Ktze. EM MISSIONES, ARGENTINA.

Dissertação apresentada como requisito parcial à obtenção do Título de "Mestre em Ciências Florestais - M. Sc.", no Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná.

Orientador: Prof. Dr. Afonso Figueiredo Filho.

MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DO PARANÁ

SETOR DE CIÊNCIAS AGRÁRIAS COORDENAÇÃO DO CURSO DE PÓS-GRADUAÇÃO EM ENGENHARIA FLORESTAL

PARECER

Os membros da Banca Examinadora designada pelo Colegiado do Curso de Pós-Graduação em Engenharia Florestal, reuniram-se para realizar a argüição da Dissertação de Mestrado, apresentada pelo candidato ERNESTO HECTOR CRECHI, sob o título "EFEITOS DA DENSIDADE DA PLANTAÇÃO SOBRE A PRODUÇÃO, CRESCIMENTO E SOBREVIVÊNCIA DE Araucária angustifolia (Bert) O. Ktze. EM MISSIONES, ARGENTINA", para obtenção do grau de Mestre em Ciências Florestais, no Curso de Pós-Graduação em Engenharia Florestal do Setor de Ciências Agrárias da Universidade Federal do Paraná, Área de Concentração MANEJO FLORESTAL.

Após haver analisado o referido trabalho e arguido o candidato são de parecer pela "APROVAÇÃO" da Dissertação, com média final: (\mathcal{AO}), correspondente ao conceito: (\mathcal{A}).

Curitiba, 02 DE AGOSTO DE 1996

Pesq. Dr. Edilson Batista de Oliveira Primeiro Examinador

EMBRAPA/PR

Prof. Dr. Sebastião do Amaral Machado Segundo Examinador

UFPR

Manufungulfo Prof. Dr. Afonso figueiredo Filho Orientador e Presidente da Banca

UFPR

AOS MEUS PAIS
A MINHA ESPOSA LILI
A FABIAN E JAVIER
DEDICO.

AGRADECIMENTOS

De modo especial, a meu orientador, Professor Afonso Figueiredo Filho, pela amizade, estímulo, interesse e dedicação na orientação de meu trabalho.

Também de maneira especial ao Professor Sebastião do Amaral Machado pela atenção, sugestões e esclarecimentos durante o desenvolvimento do trabalho.

Ao Professor Flávio Felipe Kirchner pelas valiosas sugestões.

Ao Professor Décio José de Figueiredo, pelas sugestões e revisão do trabalho.

Ao Instituto Nacional de Tecnologia Agropecuária (INTA), pela oportunidade de realização do curso.

Aos amigos, estudantes, funcionários e professores do curso de Pós-Graduação em Engenharia Florestal, pelo constante apoio e amizade.

Às funcionárias da Biblioteca do Setor de Ciências Agrárias da UFPR, pela dedicação na fase de revisão bibliográfica e sugestões na apresentação do trabalho.

Ao colega Engenheiro Florestal M. Sc. Ramón Alejandro Friedl, Professor da Universidade Nacional de Missiones, pelas sugestões e revisão do trabalho.

A minha esposa e filhos que, nas horas difíceis, encorajaram-me e incentivaram-me sempre.

BIOGRAFIA DO AUTOR

ERNESTO HECTOR CRECHI, filho de Héctor Pancracio Crechi e de Gerda Ema Ebert, nasceu em Eldorado, Missiones, Argentina, em 6 de julho de 1956.

Fez curso primário na Escola 254, no Município de Montecarlo, Missiones, concluindo em 1968. Completou sua formação secundária no Colégio Instituto Linea Cuchilla, em Ruiz de Montoya, Missiones, em 1974.

Em 1975 iniciou o curso de Engenharia Florestal na Universidade Nacional de Missiones, concluindo em julho de 1980. No período de fevereiro de 1981 até abril de 1988 foi Professor na Universidade Nacional de Missiones.

A partir dessa data assumiu o cargo de Pesquisador no Instituto Nacional de Tecnologia Agropecuária (INTA), na Estação Experimental de Montecarlo, Missiones, Argentina.

Em 1994 iniciou o Curso de Pós-Graduação em Engenharia Florestal, a nível de Mestrado, na Universidade Federal do Paraná, na Área de Manejo Florestal, o qual é concluído com a defesa desta dissertação.

SUMÁRIO

LISTA DE QUADROSix
LISTA DE TABELASxi
LISTA DE FIGURASxv
RESUMOxxi
ABSTRACTxxii
1 INTRODUÇÃO E CARACTERIZAÇÃO DO PROBLEMA1
1.1 OBJETIVOS
2 <u>REVISÃO DE LITERATURA</u> 7
2.1 CRESCIMENTO E PRODUÇÃO FLORESTAL
2.2 MODELOS MATEMÁTICOS PARA EXPRESSAR O CRESCIMENTO10
2.3 DIÂMETRO
2.4 ÁREA BASAL
2.5 ALTURA
2.6 MORTALIDADE
2.6.1 CAUSAS DA MORTALIDADE
2.6.2 VARIÁVEIS PREDITIVAS DA MORTALIDADE27
2.6.3 MODELOS PREDITIVOS DA MORTALIDADE28
3 MATERIAL E MÉTODOS33
3.1 LOCALIZAÇÃO E CARACTERÍSTICAS DO EXPERIMENTO33
3.1.1 SOLO33
3.1.2 CLIMA35
3.2 DESCRIÇÃO DO EXPERIMENTO35
3.3 LEVANTAMENTO DE DADOS

3.4 PROCESSAMENTO DOS DADOS
3.4.1 AJUSTE DE RELAÇÕES HIPSOMÉTRICAS
3.4.2 PROCESSAMENTO DOS DADOS POR PARCELA39
3.4.3 EFEITO DA DENSIDADE NA PRODUÇÃO41
3.4.4 MODELAGEM DA EVOLUÇÃO DAS VARIÁVEIS42
3.4.4.1 Crescimento e Produção42
3.4.4.2 Sobrevivência (Árvores por Hectare)44
3.4.4.3 Regressão Não Linear45
3.4.4.4 Comparação dos Modelos na Estimativa
das Variáveis46
3.4.5 PREDIÇÕES DE CRESCIMENTO DE POVOAMENTOS
FLORESTAIS DESBASTADOS A PARTIR DE
POVOAMENTOS FLORESTAIS NÃO DESBASTADOS47
3.4.6 PRODUÇÃO BRUTA DE MADEIRA EM POVOAMENTOS
FLORESTAIS DESBASTADOS E NÃO DESBASTADOS48
4 RESULTADOS E DISCUSSÃO
4.1 AJUSTE DE RELAÇÕES HIPSOMÉTRICAS49
4.2 ANÁLISE DE VARIÂNCIA E TESTE DE COMPARAÇÕES
DE MÉDIAS DE TRATAMENTOS53
4.2.1 EFEITO DA DENSIDADE NO CRESCIMENTO MÉDIO
DA ÁRVORE57
4.2.1.1 Diâmetro Médio Aritmético, Diâmetro Médio
Quadrático, Área Transversal Média e Volume
Médio57
4.2.1.2 Altura Média

4.2.1.3 Altura Dominante	. 69
4.2.2 EFEITO DA DENSIDADE NO CRESCIMENTO POR	
UNIDADE DE ÁREA	.71
4.2.2.1 Número de Árvores	.71
4.2.2.2 Mortalidade	.73
4.2.2.3 Área Basal	.76
4.2.2.4 Volume por Hectare	.80
4.3 MODELAGEM DAS VARIÁVEIS DO POVOAMENTO	.83
4.3.1 DIÂMETRO MÉDIO ARITMÉTICO	.83
4.3.1.1 Diâmetro Médio Aritmético com Valor	
Assintótico Fixo	.87
4.3.2 DIÂMETRO MÉDIO QUADRÁTICO	.89
4.3.2.1 Diâmetro Médio Quadrático com Valor	
Assintótico Fixo	.91
4.3.3 ALTURA MÉDIA	.92
4.3.4 ALTURA DOMINANTE	.95
4.3.5 ÁREA BASAL	.97
4.3.5.1 Evolução da Área Basal com Valor	
Assintótico Fixo	101
4.3.5.2 Modelo de Projeção para a Área Basal	104
4.3.6 VOLUME TOTAL	105
4.3.6.1 Evolução do Volume Total com Valor	
Assintótico Fixo	109
4.3.7 SOBREVIVÊNCIA	111
4 3 7 1 Sobrevivência (Árvores nor Hectare)	111

4.4 PROGNOSE DO CRESCIMENTO E DA PRODUÇÃO COM
O MODELO DE CHAPMAN-RICHARDS113
4.4.1 APLICAÇÃO DA HIPÓTESE DE MARSH117
4.4.2 APLICAÇÃO DAS CURVAS DE PRODUÇÃO PARA
SIMULAR REGIMES SILVICULTURAIS120
4.4.2.1 Produção de Madeira124
4.4.2.2 Produção de Madeira Grossa126
4.4.2.3 Misto
4.4.3 APLICAÇÃO DA TEORIA DE MÖLLER130
5 <u>CONCLUSÕES</u>
6 <u>ANEXOS</u> 137
6.1 ANEXO 1
6.2 ANEXO 2 149
7 REFERÊNCIAS BIBLIOGRÁFICAS

LISTA DE QUADROS

1- ESTATÍSTICAS CLIMÁTICAS. QUARTEL RIO VICTORIA	35
2- TRATAMENTOS OU DENSIDADES INICIAIS DE PLANTAÇÃO	
DO EXPERIMENTO	37
3- LISTA DE VARIÁVEIS ESTUDADAS	41
4- RELAÇÕES ENTRE A IDADE DE MANIFESTAÇÃO DA	
CONCORRÊNCIA E DENSIDADE DE PLANTAÇÃO	63
5- RELAÇÕES ENTRE A IDADE DE MANIFESTAÇÃO DA CONCORRÊNCIA	
SOBRE A ALTURA MÉDIA E DENSIDADE DE PLANTAÇÃO	69
6- COMPARAÇÃO DOS VOLUMES MÉDIOS	81
7- MÁXIMOS VALORES DE ICA E IMA EM ÁREA BASAL E IDADES	
EM QUE OCORREM PARA AS DUAS DENSIDADES EXTREMAS1	14
8- EXEMPLO HIPÓTESE DE MARSH. DESBASTE EM TERMOS	
DE ÁREA BASAL (G)1	17
9- EXEMPLO HIPÓTESE DE MARSH. IDADES APARENTE E REAL	
NO MOMENTO DE FAZER OS DESBASTES1	17
10- MÁXIMIZAÇÃO DA PRODUÇÃO EM VOLUME1	24
11- MÁXIMIZAÇÃO DA PRODUÇÃO EM MADEIRA GROSSA1	26
12- PRODUÇÃO MISTA1	28
13- DIÂMETRO MÉDIO ARITMÉTICO (cm) PARA AS 3 REPETIÇÕES,	
PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES	
DE MEDIÇÃO1	39
14- DIÂMETRO MÉDIO QUADRÁTICO (cm) PARA AS 3 REPETIÇÕES,	
PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES	
DE MEDIÇÃO1	40

15-	ÁREA TRANSVERSAL MÉDIA (cm²) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDIÇÃO141
16-	ALTURA TOTAL MÉDIA (m) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDIÇÃO142
17-	ALTURA DOMINANTE MÉDIA (m) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDIÇÃO143
18-	VOLUME MÉDIO (m³) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDIÇÃO144
19-	ÁREA BASAL (m²/ha) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDIÇÃO145
20-	NÚMERO DE ÁRVORES VIVAS (arv/ha) PARA AS 3
	REPETIÇÕES, PARA AS DIFERENTES DENSIDADES
	INICIAIS E IDADES DE MEDIÇÃO146
21-	SOBREVIVÊNCIA EM PORCENTAGEM (S) PARA AS 3
	REPETIÇÕES, PARA AS DIFERENTES DENSIDADES
	INICIAIS E IDADES DE MEDIÇÃO147
22-	VOLUME TOTAL (m³/ha) PARA AS 3 REPETIÇÕES,
	PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES
	DE MEDICÃO148

LISTA DE TABELAS

1-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DAS EQUAÇÕES DE RELAÇÃO HIPSOMÉTRICA49
2-	ANÁLISE DE VARIÂNCIA PARA O DIÂMETRO MÉDIO
	ARITMÉTICO NA IDADE DE 6 ANOS53
3-	RESULTADOS DO DIÂMETRO MÉDIO ARITMÉTICO NA IDADE
	DE 6 ANOS53
4-	TESTE DE TUKEY PARA O DIÂMETRO MÉDIO ARITMÉTICO
	NA IDADE DE 6 ANOS54
5-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN
	(DIÂMETRO MÉDIO ARITMÉTICO)84
6-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	PARA O MODELO DE CHAPMAN-RICHARDS COM O DIÂMETRO
	MÉDIO ARITMÉTICO (VALOR ASSINTÓTICO) FIXO88
7-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN
	(DIÂMETRO MÉDIO QUADRÁTICO)89
8-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE .
	PARA O MODELO DE CHAPMAN-RICHARDS COM O DIÂMETRO
	MÉDIO QUADRÁTICO (VALOR ASSINTÓTICO) FIXO92
9-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN
	(ALTURA MÉDIA)92

10-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN
	(ALTURA DOMINANTE)95
11-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN
	(ÁREA BASAL)98
12-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	PARA O MODELO DE CHAPMAN-RICHARDS COM ÁREA
	BASAL MÉDIA (VALOR ASSINTÓTICO) FIXO103
13-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DO MODELO DE CHAPMAN-RICHARDS MODIFICADO POR
	MURPHY104
14-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELÓS DE CHAPMAN-RICHARDS E PRODAN
	(VOLUME TOTAL)
15 -	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	PARA O MODELO DE CHAPMAN-RICHARDS COM VOLUME
	MÉDIO (VALOR ASSINTÓTICO) FIXO110
16-	COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE
	DOS MODELOS DE SOBREVIVÊNCIA DE CHAPMAN-RICHARDS
	MODIFICADO E SILVA111
17-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO
	PARA A DENSIDADE DE 4444 ARV/HA (MODELO DE
	CHAPMAN-RICHARDS)150

18-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 3333 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	1
19-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 2500 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	2
20-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 2000 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	3
21-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 1600 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	4
22-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 1666 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	,5
23-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 1333 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	6
24-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 1111 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	7
25-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO	
	PARA A DENSIDADE DE 816 ARV/HA (MODELO DE	
	CHAPMAN-RICHARDS)15	8,

26-	EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO
	PARA A DENSIDADE DE 625 ARV/HA (MODELO DE
	CHAPMAN-RICHARDS)159
27-	PRODUÇÃO (m²/ha) E CRESCIMENTO (m²/ha/ano) EM
	ÁREA BASAL PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO (MODELO DE CHAPMAN-RICHARDS)160
28-	PRODUÇÃO (m³/ha) E CRESCIMENTO (m³/ha/ano) EM
•	VOLUME TOTAL PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO (MODELO DE CHAPMAN-RICHARDS)

LISTA DE FIGURAS

1-	CRESCIMENTO ACUMULADO DO VOLUME E OS CRESCIMENTOS	
	CORRENTE E MÉDIO ANUAL PARA A DENSIDADE DE	
	4444 ARV/HA (MODELO DE CHAPMAN-RICHARDS)	15
2-	LOCALIZAÇÃO DO EXPERIMENTO	34
3 –	DESENHO DO EXPERIMENTO PARA AS DIFERENTES DENSIDADES	
	DE PLANTAÇÃO	36
4-	EVOLUÇÃO DA RELAÇÃO HIPSOMÉTRICA PARA DIFERENTES	
	IDADES DE MEDIÇÃO NA DENSIDADE DE 1111 ARV/HA	
	(EQUAÇÃO DE CURTIS)	52
5-	DISTRIBUIÇÃO DOS RESÍDUOS EM PORCENTAGEM EM FUNÇÃO	
	DO DAP PARA A DENSIDADE DE 1111 ARV/HA (EQUAÇÃO	
	DE CURTIS)	52
6-	EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO EM FUNÇÃO	
	DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES	
	IDADES DE MEDIÇÃO	59
7-	EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO EM FUNÇÃO	
	DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES	
	IDADES DE MEDIÇÃO	59
8-	EVOLUÇÃO DA ÁREA TRANSVERSAL MÉDIA EM FUNÇÃO DA	
	DENSIDADE DE PLANTAÇÃO PARA DIFERENTES	
	IDADES DE MEDIÇÃO	60

9- 1	EVOLUÇÃO DO VOLUME DA ÁRVORE MÉDIA EM FUNÇÃO DA
]	DENSIDADE DE PLANTAÇÃO PARA DIFERENTES
	IDADES DE MEDIÇÃO60
10-	EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO EM FUNÇÃO
	DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES
	DE PLANTAÇÃO61
11-	EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO EM FUNÇÃO
	DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES
	DE PLANTAÇÃO61
12-	EVOLUÇÃO DA ÁREA TRANSVERSAL MÉDIA EM FUNÇÃO DA
	IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO62
13-	EVOLUÇÃO DO VOLUME DA ÁRVORE MÉDIA EM FUNÇÃO DA
	IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO62
14-	EVOLUÇÃO DA ALTURA MÉDIA EM FUNÇÃO DA DENSIDADE DE
	PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO65
15-	EVOLUÇÃO DA ALTURA MÉDIA EM FUNÇÃO DA IDADE DE
	MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO65
16-	EVOLUÇÃO DA ALTURA DOMINANTE EM FUNÇÃO DA DENSIDADE
	DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO70
17-	EVOLUÇÃO DA ALTURA DOMINANTE EM FUNÇÃO DA IDADE DE
	MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO70
18-	EVOLUÇÃO DO NÚMERO DE ÁRVORES EM FUNÇÃO DA DENSIDADE
	DE DIAMPAÇÃO DADA DIFERENTES IDADES DE MEDIÇÃO 72

19-	EVOLUÇÃO DO NÚMERO DE ÁRVORES EM FUNÇÃO DA IDADE
	DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO72
20-	EVOLUÇÃO DA MORTALIDADE EM FUNÇÃO DA DENSIDADE
	DE PLANTAÇÃO PARA DIFERENTES IDADES DE
	MEDIÇÃO75
21-	EVOLUÇÃO DA MORTALIDADE EM FUNÇÃO DA IDADE DE
	MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO76
22	EVOLUÇÃO DA ÁREA BASAL EM FUNÇÃO DA DENSIDADE
	DE PLANTAÇÃO PARA DIFERENTES IDADES DE
	MEDIÇÃO78
23-	EVOLUÇÃO DA ÁREA BASAL EM FUNÇÃO DA IDADE DE
	MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO79
24-	EVOLUÇÃO DO VOLUME EM FUNÇÃO DA DENSIDADE DE
	PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO82
25-	EVOLUÇÃO DO VOLUME TOTAL EM FUNÇÃO DA IDADE
	DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE
	PLANTAÇÃO83
26-	EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO (MODELO DE
	CHAPMAN-RICHARDS)86
27-	EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO (MODELO DE
	PRODAN)87
28-	EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO COM VALOR
	ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS)

29-	EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO (MODELO DE
	CHAPMAN-RICHARDS)90
30-	EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO (MODELO DE
	PRODAN)90
31-	EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO COM VALOR
	ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS)91
32-	EVOLUÇÃO DA ALTURA MÉDIA (MODELO DE CHAPMAN-
	RICHARDS)94
33-	EVOLUÇÃO DA ALTURA MÉDIA (MODELO DE PRODAN)94
34-	EVOLUÇÃO DA ALTURA DOMINANTE MÉDIA (MODELO DE
	CHAPMAN-RICHARDS)96
35-	EVOLUÇÃO DA ALTURA DOMINANTE MÉDIA (MODELO DE
	PRODAN)97
36-	EVOLUÇÃO DA ÁREA BASAL (MODELO DE CHAPMAN-
	RICHARDS)100
37-	EVOLUÇÃO DA ÁREA BASAL (MODELO DE PRODAN)100
38-	EVOLUÇÃO DA ÁREA BASAL COM VALOR ASSÍNTOTICO
	FIXO (MODELO DE CHAPMAN-RICHARDS)103
39-	EVOLUÇÃO DO VOLUME TOTAL (MODELO DE CHAPMAN-
	RICHARDS)107
40-	EVOLUÇÃO DO VOLUME TOTAL (MODELO DE PRODAN)107
41-	EVOLUÇÃO E TENDÊNCIA DO VOLUME TOTAL (MODELO
	DE CHAPMAN-RICHARDS)108
42-	EVOLUÇÃO E TENDÊNCIA DO VOLUME TOTAL (MODELO
	DE PRODAN)

43-	EVOLUÇÃO DO VOLUME TOTAL COM VALOR ASSINTOTICO
	FIXO (MODELO DE CHAPMAN-RICHARDS)11
44-	EVOLUÇÃO DA SOBREVIVÊNCIA (MODELO DE CHAPMAN-
	RICHARDS MODIFICADO)11
45-	EVOLUÇÃO DA SOBREVIVÊNCIA (MODELO DE SILVA)11
46-	EVOLUÇÃO DO ICA PARA ÁREA BASAL (MODELO DE
	CHAPMAN-RICHARDS)11
47-	EVOLUÇÃO DO IMA PARA ÁREA BASAL (MODELO DE
	CHAPMAN-RICHARDS)11
48-	EVOLUÇÃO DO ICA PARA VOLUME TOTAL (MODELO DE
	CHAPMAN-RICHARDS)11
49-	EVOLUÇÃO DO IMA PARA VOLUME TOTAL (MODELO DE
	CHAPMAN-RICHARDS)11
50-	EXEMPLO HIPÓTESE DE MARSH. GRÁFICO EM TERMOS
	DE ÁREA BASAL11
51-	PROGNOSE DO VOLUME TOTAL PARA A DENSIDADE DE
	4444 ARV/HA (ONDE O MÁXIMO IMA EM VOLUME
	OCORRE)
52-	PROGNOSE DA ÁREA BASAL PARA A DENSIDADE DE
	4444 ARV/HA (ONDE O MÁXIMO IMA EM VOLUME
	OCORRE)
53-	PROGNOSE DA PRODUÇÃO EM VOLUME PARA AS DENSIDADES
	DE 1600 E 625 ARV/HA12
54-	PROGNOSE DA PRODUÇÃO EM ÁREA BASAL VOLUME PARA AS
	DENSIDADES DE 1600 E 625 ARV/HA

55-	PROGNOSE DA PRODUÇÃO EM ÁREA BASAL PARA AS	
	DENSIDADES DE 2000, 1111 E 625 ARV/HA	129
56-	PROGNOSE DA PRODUÇÃO EM VOLUME PARA AS DENSIDADES	
	DE 2000, 1111 E 625 ARV/HA	129
57-	TEORIA DE MÖLLER PARA AS DENSIDADES DE 2000,	
	1111 E 625 ARV/HA	130

RESUMO

A partir de dados provenientes de um experimento de Araucaria angustifolia (Bert.) O. Ktze., instalado em 1971, em Cuartel Rio Victoria, Missiones, Argentina, estudou-se o efeito de 10 densidades de plantação, de 625 até 4444 árvores por hectare, sobre o diâmetro médio aritmético, diâmetro médio quadrático, área transversal média, altura média, altura dominante, volume médio, área basal, volume total, número de árvores e sobrevivência. Os dados utilizados correspondem a medições efetuadas nas idades de 6, 7, 8, 9, 11, 12, 18, 22 e 24 anos de idade. O efeito da densidade de plantação sobre cada variável e idade de medição foi avaliado através de análise de variância e teste de Tukey. Relações hipsométricas desenvolvidas modelo de Curtis aiustou-se е 0 tendenciosidades para toda a amplitude de diâmetros e idades consideradas. Verificou-se um efeito significativo da densidade de plantação sobre todas as variáveis estudadas, com exceção da dominante. Analisou-se as tendências observadas altura estabeleceram-se as idades a partir das quais a densidade de plantação comeca a influenciar negativamente sobre variável. Os modelos de Chapman-Richards e Prodan, testados crescimento variáveis modelar das descreveram 0 adequadamente e eficientemente a evolução dessas variáveis dentro do intervalo de idades analisadas e para todas as densidades de plantio estudadas. Todavia, o modelo de Chapman-Richards estimou de maneira mais realística os assintóticos das variáveis analisadas. Através deste modelo foi apresentada a prognose da produção em forma de tabelas de crescimento e produção. Obteve-se resultados satisfatórios na modelagem da sobrevivência, com o modelo de Silva e o modelo de Chapman-Richards modificado em função da idade e número de árvores. Através da aplicação das curvas de produção para simular regimes silviculturais foi possível confirmar a Teoria de Möller para a espécie estudada.

ABSTRACT

Basing on data from an Araucaria angustifolia (Bert.) O. set up in 1971, in Cuartel Rio Ktze, trial, Missiones, Argentina, it was studied the effects of different inicial plantation densities, from 625 to 4444 trees por hectare on the following parameters: arithmetic mean dbh, quadratic mean dbh, mean sectional area, mean total height, dominant height, tree mean volume, basal area por hectare, total volume por hectare, number of trees and survival. The used data came from remeasurements in permanent sample plots at the ages 6, 7, 8, 9, 11, 12, 18, 22 and 24. The plantation density effect on each variable and mensuration age, was done through analysis of variance, and the Tukey's test. Heightdiameter relationships were developed, and the Curtis' model fitted withought tendencies for the all range of searched diameters and ages. It was detected significant effects of the plantation density on all studied variables, except on dominant height. It was analysed the observed tendencies and it was detected the ages from which the plantation density start to affect negatively the development of each variable. Chapman-Richards and Prodan's models, tested for modelling the variables growth, described adequately and efficiently the evolution of these variables within the analysed age range, and for all planting densities. However the Chapman-Richards' model estimated more realistically the assymtotic values of the analysed vaiables. Tables of predicted growth and yield were presented basing on the Chapman-Richards' model. Satisfactory results on survival modelling were obtained with the Silva's model, and with the modified Chapman-Richards' model as a function of age and number of trees. The Möller's Theory for the studied specie was confirmed by using the yield curves to simulate silvicultural regimes.

1 INTRODUÇÃO E CARACTERIZAÇÃO DO PROBLEMA

Na Argentina, a necessidade de aumentar e diversificar a produção florestal deu origem, a partir de 1960, a amplos planos de florestamento e reflorestamento através de incentivos fiscais.

A Araucaria angustifolia (Bert.) O. Ktze. por reunir uma série de características desejáveis, tais como: ótimo porte florestal, boa qualidade da madeira e um mercado relativamente favorável, foi a espécie florestal mais plantada.

Contudo, esta espécie pouco a pouco foi sendo substituída por outras, sobretudo *Pinus elliottii* var. *elliottii* e *Pinus taeda* L.. Isto ocorreu por uma série de fatores como o seu menor crescimento, dificuldade na obtenção de sementes, menor tempo disponível para semeadura e a exigência em qualidade de sítio, comparativamente aquelas espécies.

Apesar de ter sido amplamente florestada, a silvicultura da Araucária, é pouco conhecida, sendo implantada com densidades relativamente rígidas e manejo tradicional, sem um objetivo claro de produção.

Diante dessas dificuldades, o Departamento Florestal do INTA (Instituto Nacional de Tecnologia Agropecuária), iniciou pesquisas na área de melhoramento e silvicultura desta espécie, entre elas, estudos de diferentes densidades de plantação, com

o objetivo de avaliar o efeito da densidade sobre o crescimento e a produção.

A produção de um povoamento florestal é determinada pelos seguintes fatores: qualidade do material genético (espécie, origem, procedência e outras), qualidade do sítio, densidade e tratamentos culturais aplicados (limpeza, desbastes, podas, adubação e outras).

Segundo DANIEL; HELMS; BAKER (1982) a densidade da floresta é o segundo fator em importância, depois da qualidade do sítio, na determinação da produtividade de um povoamento florestal; a densidade é o principal fator que o silvicultor pode manejar durante o desenvolvimento da mesma.

FAHLER et al. (1986) sugeriu que, sendo a densidade inicial um efeito antrópico, interessa conhecer com maior clareza sua incidência sobre o comportamento diamétrico e por extensão sobre a área basal e o volume. Esse autor citou PRYOR¹, que afirmou que a escolha da densidade de plantação (espaçamento adotado), constitui uma das decisões mais difíceis para o produtor florestal.

É conhecida a importância que têm a avaliação destes fatores (qualidade do material genético, qualidade do sítio, densidade e tratamentos culturais aplicados), por parte dos manejadores florestais na tomada de decisões, para alcançar o

¹PRYOR, L. Eucalyptus in plantations - present and future. In: FAO WORLD SYMPOSIUM ON MAN-MADE FOREST AND THEIR INDUSTRIAL IMPORTANCE, 1967. Documents presented. Rome, FAO, 1967. v. 2, p. 993-1008.

objetivo de produção, definido pela quantidade, tamanho, qualidade e oportunidade de obtenção dos produtos.

Constituem-se em uma preocupação cotidiana para produtores e empresários, aspectos como: densidade de plantio, época e intensidade dos desbastes, idade de corte final (rotação), quantidade e tipos de produtos obtidos. Neste aspecto, informações sobre crescimento e produção das florestas de Araucaria angustifolia (Bert.) O. Ktze. são deficientes.

As tabelas de produção se constituem em ferramentas técnicas fundamentais para a tomada de decisões sobre ditos aspectos. Tabela de produção é uma apresentação em forma tabelar do volume ou de outro atributo do povoamento em função da idade e do sítio, ou então em função da idade, do sítio e da densidade do povoamento florestal, e são utilizadas para:

- a) projeção da oferta de matéria prima das florestas de uma empresa, região ou estado;
- b) projeção de dados de inventários florestais a curto prazo;
- c) elaboração de planos de manejo de plantações;
- d) avaliação financeira e da produção de alternativas silviculturais (densidade de plantação, desbastes);
- e) descrição quantitativa do processo de crescimento;
- f) guia para o manejo de talhões individuais.

Todos esses usos facilitam a planificação da produção e a caracterização e pesquisa silvicultural e ecológica da empresa ou região.

O conhecimento prévio do crescimento e da composição diamétrica da floresta, para diferentes densidades de plantação, é condição necessária para avaliar todas as alternativas e efetuar a escolha mais conveniente.

A otimização das decisões para adoção de práticas de manejo depende, fundamentalmente, de um amplo conhecimento do potencial produtivo da floresta. Nesse contexto, insere-se o desenvolvimento dos sistemas preditivos do crescimento e da produção florestal.

A importância econômica representada pela espécie Araucaria angustifolia (Bert.) O. Ktze., torna fundamental a geração de um instrumento técnico (tabelas de crescimento e produção) que facilite as tomadas de decisão no seu manejo.

Este estudo foi desenvolvido visando-se gerar conhecimentos de técnicas de prognose que auxiliem no manejo florestal, proporcionando uma informação consistente sobre o desenvolvimento futuro dos povoamentos desta espécie.

1.1 OBJETIVOS

Os objetivos desta pesquisa foram:

a) ajustar um modelo de relação hipsométrica que tenha diâmetro à altura do peito (d) e idade (I) como variáveis independentes para estimar altura total (h), dadas as características do experimento;

- b) analisar os efeitos da densidade de plantio sobre diâmetro médio aritmético, diâmetro médio quadrático, área transversal média, área basal, altura média, altura dominante, volume médio individual, número de árvores por hectare, sobrevivência e volume total por hectare;
- c) detectar as idades a partir das quais começa a observar-se um efeito significativo da densidade de plantio para as diferentes variáveis e analisar as tendências observadas;
- d) desenvolver funções de produção em diâmetro, área basal, altura e volume para diferentes níveis de densidade de plantação;
- e) derivar os modelos de crescimento das funções de produção (incremento médio anual, IMA e incremento corrente anual, ICA);
- f) desenvolver funções de sobrevivência para diferentes níveis de densidade de plantação;
- g) testar a hipótese de produção final constante em área basal e volume para diferentes níveis de densidade de plantação;
- h) construir tabelas de crescimento e produção para diferentes níveis de densidade de plantação;
- i) fazer uma análise comparativa da produção e crescimento para diâmetro, área basal, altura, volume e sobrevivência entre diferentes níveis de densidade

de plantação;

j) simular regimes silviculturais a partir das curvas de produção e avaliar a Teoria proposta por Möller.

2 REVISÃO DE LITERATURA

2.1 CRESCIMENTO E PRODUÇÃO FLORESTAL

Efeitos da densidade de plantação sobre o crescimento e produção de Araucaria angustifolia (Bert.) O. Ktze. foram estudados por outros autores, entre eles, SPELTZ; MONTEIRO; CORDEIRO (1980), FAHLER; DI LUCCA (1980), PUJATO; MARLATZ (1983), FRIEDL; FERNÁNDEZ; CRECHI (1991a), (1991b), FERNÁNDEZ; CRECHI; FRIEDL; FERNÁNDEZ (1991).

Segundo CAMPOS (1980), os estudos de crescimento e produção tratam do desenvolvimento de mecanismos de predição das características quantitativas de um povoamento florestal, crescendo em condições específicas. Esses estudos envolvem a análise da relação entre o volume ou qualquer outra medida de produção, a qualidade do local e a densidade da floresta.

MURPHY (1983) ressaltou que os resultados alcançados podem ser expressos em forma de tabelas ou então utilizando-se programas de computador, de grande utilidade, pois permitem conhecer a produção presente e futura, possibilitando comparar planos de manejo antes de serem implementados, permitindou-se, assim, escolher a melhor opção.

De acordo com $MEYER^2$, citado por FIGUEIREDO FILHO (1991) o crescimento passado em florestas pode ser determinado

²MEYER, H.A. Methods of forest growth determination. <u>Bulletin. Agricultural Experiment Station</u>. Pensylvania, n. 435, p. 1-93, 1942.

de duas formas diferentes: medindo-se a largura dos anéis de crescimento ou através de remedições em parcelas permanentes.

LOETSCH; ZÖHRER; HALLER (1973) afirmaram que parcelas permanentes provêm as bases mais reais para a construção de tabelas de produção. No entanto, demandam remedições sucessivas e exigem um período grande de tempo e custos bem mais expressivos.

De maneira geral a construção das tabelas de produção envolvem dois passos básicos, conforme SPURR (1952):

- a) classificação das parcelas por classe de sítio;
- b) construção das curvas de crescimento e produção para as parcelas, em cada sítio.

As primeiras tabelas de produção foram elaboradas na Europa, no final do século XVIII, mediante procedimentos gráficos (SPURR, 1952). Essas tabelas eram de dupla entrada, onde o volume por unidade de área era função da idade e do sítio, fornecendo estimativas do crescimento líquido e da produção de povoamentos puros de mesma idade e completamente estocados. Essas tabelas foram chamadas tabelas normais, por serem os dados obtidos de populações normais, de regeneração natural em estado climax, que ocupavam totalmente o potencial produtivo do local, e por isso indicavam rendimentos máximos. Como essas tabelas eram elaboradas graficamente, dificultavam as relações que envolviam mais de duas variáveis.

Posteriormente, foram construídas tabelas de produção

empíricas e, segundo HUSCH; MILLER; BEERS³, citado por SCOLFORO; GLADE (1987), são similares aos modelos de produção normais, mas ao invés de basearem-se em unidades amostrais com densidade completa, baseam-se em áreas de estoque médio. A densidade é considerada constante e a predição é expressa para a densidade média do povoamento. Assim, elas podem ser aplicadas a povoamentos completamente estocados, a povoamentos superestocados (copas das árvores cobrem 100% da superfície do terreno) ou a povoamentos subestocados, bastando para tal considerar-se a densidade média.

Um novo caminho abriu-se nas investigações sobre tabelas de crescimento e produção quando MACKINNEY; SCHUMACHER; CHAIKEN4, citado por SCOLFORO (1990), empregaram a técnica dos mínimos quadrados para sua obtenção. Surgiram, assim, as tabelas de densidade variável, que utilizam como variáveis independentes a idade, o sítio e a densidade, onde a densidade é uma variável dinámica e não uma constante. Essas tabelas apresentam a produção para vários níveis de estoque pelo fato de serem construídas a partir de unidades amostrais com diferentes densidades e considerarem esta característica como uma variável independente do modelo.

³HUSCH, B.; MILLER, C. I.; BEERS, T. W. <u>Forest mensuration</u>. 3rd. ed. New York: Wiley, 1982. 397 p.

⁴MACKINNEY, A.L.; SCHUMACHER, F.X.; CHAIKEN, L.E. Construction of yield tables for non normal loblolly pine stands. <u>Journal of Agricultural</u> Research, Washington, v. 54, n.7, p. 531-545, 1937.

2.2 MODELOS MATEMÁTICOS PARA EXPRESSAR O CRESCIMENTO

Existem dois tipos de modelos de crescimento: os biológicos e os empíricos. Segundo PIENAAR⁵, citado por MACHADO (1978), pode-se dizer que, enquanto um modelo empírico refere-se a uma expressão matemática que relaciona variáveis que podem ser esperada pela lógica, um modelo biológico é uma expressão matemática de uma hipótese lógica à biologia do processo de crescimento.

Segundo PIENAAR; TURNBULL (1973), a diferença entre um modelo empírico e um biológico está, principalmente, no fato de que certos aspectos (características) são incorporados no modelo sobre motivos lógicos, baseados em experiências, e não necessariamente por observação nos dados amostrais sob análises.

SOMERS; FARRAR (1991) afirmaram que é responsabilidade do técnico selecionar modelos que não somente resultem em predições exatas dentro da amplitude de dados observáveis, mas também com extrapolações razoáveis e lógicas.

Os estudos de crescimento e produção até 1962 foram desenvolvidos sem que fosse observado o princípio de compatibilidade entre eles, ou seja, os modelos de crescimento eram desenvolvidos independentemente dos modelos de produção.

BUCKMAN (1962) e CLUTTER (1963) resolveram o problema da incompatibilidade dos modelos com o uso do cálculo integral e

⁵ PIENAAR, L. V. Quantitative theory of forest growth. Washington, 1965. 176 f. Thesis (Doctor of Philosophy). University of Washington.

do cálculo diferencial, ou seja, fazendo a primeira derivada do modelo de produção, obtém-se o modelo de crescimento, e com o procedimento inverso, ou seja, integrando o modelo de crescimento obtém-se o modelo de produção. Um exemplo deste procedimento foi apresentado por SCOLFORO (1990).

Inúmeros trabalhos observando-se o princípio de compatibilidade foram realizados a partir de então, tais como os apresentados por SULLIVAN; CLUTTER (1972), MURPHY; STERNITZKE (1979), MURPHY; BELTZ (1981).

Desta maneira, observa-se que a função que define a produção total deve ter:

- a) origem;
- b) ponto de inflexão;
- c) ponto de tangência máximo que passa pela origem;
- d) assintota.

Na função de crescimento, o ponto de máximo ICA coincide com o ponto de inflexão na curva de crescimento acumulado. O máximo IMA coincide com o ponto de tangência máxima na curva de crescimento acumulado. Este ponto também coincide com o cruzamento das curvas de ICA e IMA. Este ponto de cruzamento é um ponto de referência que têm servido como base de manejo para muitos florestais, já que indica a máxima produtividade. Por outro lado, este ponto é irrelevante quando as plantações são conduzidas com um objetivo de produção em quantidades e qualidades adequadas ao seu uso final (serraria, laminado e outras).

Os modelos biológicos representam melhor o crescimento de organismos vivos, comportando-se de forma realística sem apresentar valores inexplicáveis, além de serem totalmente compatíveis.

RICHARDS (1959), estudando o crescimento de plantas, utilizou uma função de crescimento desenvolvida por Von Bertalanffy em 1951, que desenvolveu um modelo baseado em um metabolismo considerando que a taxa anabólica (formativa) é proporcional à área da superfície de um organismo, enquanto a taxa catabólica (destrutiva) é proporcional ao volume do corpo do organismo, ou seja:

Taxa de crescimento $dW/dI = n \cdot W^{2/3} - v \cdot W$ onde:

W = tamanho na idade I

n = taxa anabólica

v = taxa catabólica

 $n \cdot W^{2/3} = expressa o crescimento potencial$

v · W = expressa as restrições ao crescimento

O mesmo autor, trabalhando com vegetais investigou as funções biológicas, e desenvolveu uma função de crescimento baseada na função anterior. Através da pesquisa chegou a conclusão que o expoente fixo (2/3) era muito restritivo, propondo então sua substituição por "m". CHAPMAN (1961), trabalhando com peixes, chegou às mesmas conclusões. Resultando:

$$dW/dI = n \cdot W^{m} - v \cdot W \tag{1}$$

então, integrando-se esta função de crescimento, têm-se

$$W_{I} = A [1 - \exp(-K(I - I_{O}))]^{1/(1-m)}$$
 (2)

fazendo:

$$e^{-K(I-Io)} = e^{-KI} \cdot e^{KIo}$$

 $e^{K \text{ io}} = f(b)$, resulta o modelo final

$$W_{I} = A [1 - b \cdot e^{-K I}]^{1/(1-m)}$$

onde:

"A" significa o valor final da planta ou organismo (valor assintótico), "m" é responsável pela localização do ponto de inflexão, exclusivamente responsável pela forma da curva. Quando m = 0 não há ponto de inflexão e à medida que "m" cresce o ponto de inflexão caminha em direção à assíntota. "K" define a inclinação média da curva de crescimento ou produção ou define a taxa de mudança do valor da função de W e o coeficiente "b" reflete somente a escolha do tempo zero. Para b = 1 e I = 0 a curva passa pela origem.

Segundo PIENAAR; TURNBULL (1973) suas várias formas representam infinitas curvas de crescimento:

Para m = 2/3 representa a ley de Von Bertalanffy

para m = 0 representa a função monomolecular

para m = 1 representa a função de Gompertz

para m = 2 representa a função logística

Derivando-se a equação (1), a inflexão da curva de crescimento ocorre quando:

$$W_{m\acute{a}x} = [m \cdot (n / v)]^{1/(1-m)} = A \cdot m^{1/(1-m)}$$
 (3)

onde $m^{1/(1-m)}$ é a fração de tamanho assintótico onde o máximo de crescimento ocorre.

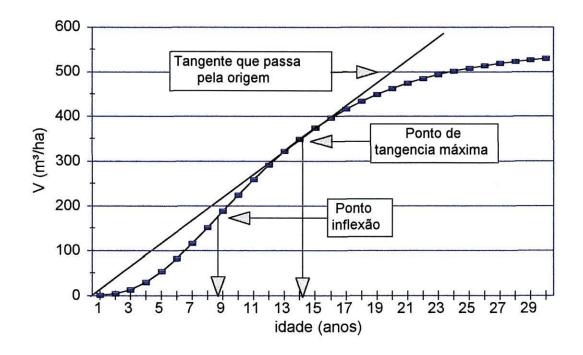
A partir da equação (2) o crescimento pode ser escrito: $dW/dI = \{K \cdot W \left[(A/W)^{1-m} - 1 \right] \}/(1-m)$

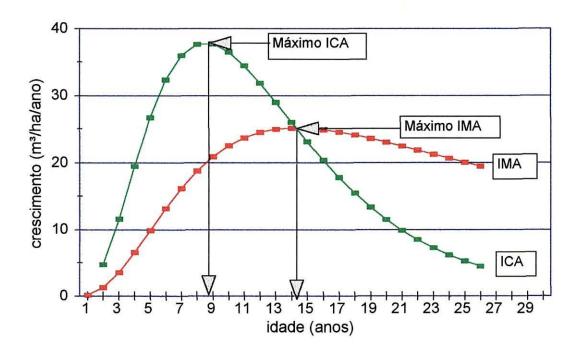
sustituindo (3) em (2) o máximo crescimento é $dW/dI = A \cdot K \cdot m^{m/(1-m)}$

A idade na qual o máximo de crescimento ocorre:

$$I_{max} = \{ln[exp(K \cdot Io)/(1-m)]\} / K = [K \cdot Io -ln(1-m)] / K$$

Um exemplo de modelo compatível de crescimento e produção apresenta-se na Figura 1, feito pelo autor com dados deste trabalho, através do modelo biológico de Chapman-Richards para a densidade de 4444 árvores por hectare. Em dita figura, observa-se a curva de crescimento acumulado (produção, em 3 /ha), e os crescimentos corrente e médio anual (incrementos, em 3 /ha/ano).


TURNBULL⁶, citado por MACHADO (1978), foi o primeiro no campo florestal a usar esta função geral que têm forma sigmoidal, denominando-a de Chapman-Richards. Mais tarde PIENAAR (1965) e PIENAAR; TURNBULL (1973) usaram este modelo para estudar produção e crescimento em área basal para plantações de *Pinus elliottii*, testando diferentes densidades de plantação, observando que dentro de um certo limite, todas


⁶TURNBULL, K. J. <u>Population dynamics in mixed forest stands</u>: a system of mathematical model of mixed stand growth and structure. Washington, 1963. 186 f. Thesis (Doctor of Philosofy)-University of Washington.

elas convergem para um valor final constante de produção.

FIGURA 1- CRESCIMENTO ACUMULADO DO VOLUME E OS ICA E IMA PARA A

DENSIDADE DE 4444 ARV/HA (MODELO DE CHAPMAN-RICHARDS).

A partir de então, uma série de trabalhos foram desenvolvidos com esta função, como pode ser observado em trabalhos apresentados por MACHADO (1978), (1981), SCOLFORO; MACHADO (1988a), (1988b), FASSOLA; BRANDAN (1991).

MURPHY (1983) integrou o modelo (1), entre uma idade inicial I_1 e uma idade futura I_2 , como (4):

$$G_2 = [n/K - (n/K - G_1^{(1-m)}) \cdot e^{-K(1-m) \cdot (I_2 - I_1)}]^{-1/(1-m)}$$
 (4)

que pode ser reparametrizado como a equação de projeção de área basal (5):

$$G_2 = [G_{\text{max}}^{b1} - (G_{\text{max}}^{b1} - G_1^{b1}) \cdot e^{b2} (I_2^{-1}_1)]^{1/b1}$$
 (5)

onde:

 G_i = área basal por unidade de área no tempo i, i=1,2

 G_{max} = área basal máxima (muitas vezes a ser estimada)

 I_i = idade do povoamento no tempo i

 $b_1, b_2 = parâmetros a serem estimados$

Para cada densidade de plantação foi ajustado o modelo utilizado por MURPHY (1983) e através de regressão não linear foram estimados: G_{max} , b_1 e b_2 para o modelo sem assíntota fixa. Por outro lado, apenas b_1 e b_2 foram estimados para o modelo com assíntota fixa. Fazendo G_1 = 0 para I_1 = 0, a equação de projeção é equivalente à equação de produção usada por PIENAAR; TURNBULL (1973), que testaram numerosas hipóteses sobre a produção em área basal por acre.

2.3 DIÂMETRO

O DAP é uma das variáveis mais importantes no manejo florestal, sendo facilmente medível (medição direta). O crescimento em diâmetro é muito mais afetado pela densidade do que o crescimento em altura.

SCHÖNAU (1975) estudou o efeito da qualidade de sítio e da densidade inicial de plantação sobre o diâmetro médio, em Acacia mearnsii De Wild, no Kenya, e investigou a relação desta variável com a idade, densidade e sítio. Através de regressão múltipla, ele concluiu que essas variáveis foram altamente significantes, para descrever a evolução do diâmetro em diferentes densidades de plantios.

2.4 ÁREA BASAL

Segundo SPURR (1952), a área basal é a mais simples e mais usada medida de densidade. A área basal expressa em m²/ha, é resultado de medições do DAP e do número de árvores, daí a importância dos modelos de sobrevivência. É uma variável muito usada em estudos de crescimento, diretamente ou como variável independente para estimar outros parâmetros da floresta.

É um índice de densidade muito usado para tomar decisões de manejo, fundamentalmente nas decisões de oportunidade e intensidade dos desbastes. Daí a importância de poder descrever

para cada densidade, a evolução da área basal expressa em m²/ha em função da idade e/ou de outras variáveis, aos efeitos de analisar distintas alternativas de manejo, e poder fazer a escolha mais conveniente.

Segundo SPURR (1952), existem ventagens em estudar crescimento em área basal em vez do crescimento em volume. O volume depende do diâmetro, altura e forma, e portanto a estimativa do crescimento em volume depende do método de estimativa destas variáveis. A área basal, por outro lado, é medida diretamente e o seu crescimento pode ser precisamente determinado.

No I Encontro Nacional de Pesquisadores para padronização da Terminologia Florestal⁷, citado por FIGUEIREDO FILHO (1983), definiu-se a área basal (G) como sendo a soma das áreas transversais (g) de todas as árvores de uma amostra ou de um talhão. (G) é calculado através dos diâmetros medidos à altura do peito (1,30 m).

A área transversal (g) foi definida como a área seccional de uma árvore e pode ser obtida pela fórmula $g=\pi\cdot d^2/4$, sendo "d" o diâmetro a 1,30 m. Foi definida ainda, que área transversal e área basal individual são sinônimos em razão do largo uso destes termos em outras literaturas e também na literatura brasileira.

⁷ENCONTRO NACIONAL PARA PADRONIZAÇÃO DA TERMINOLOGÍA FLORESTAL (1: 1976:Curitiba). Anais. Curitiba, FIEP, 1976.

Segundo HAMILTON⁸, citado por FIGUEIREDO FILHO (1983), a avaliação da área basal geralmente é feita mediante o estabelecimento de parcelas amostrais, onde procede-se a medição das circunferências ou diâmetros de todas as árvores, convertendo-os em áreas transversais que somadas resultarão na área basal da parcela e multiplicadas por um fator obtido pela divisão do hectare pela área da amostra, redundará na área basal por hectare.

Segundo BURGER (1980), a área basal pode ser obtida pelo número de árvores, diâmetro médio aritmético (\overline{d}) e a variância diamétrica (S_d^2) da seguinte maneira:

$$dg = (\overline{d}^2 + S_d^2)^{1/2}$$

$$\overline{g} = (\pi/4) \cdot dg^2$$

$$G = N \cdot \overline{g} = N \cdot (\overline{d}^2 + S_d^2) \cdot \pi / 4$$

onde:

dg = diâmetro correspondente à árvore de área transversal média
 (diâmetro médio quadrático).

g = área transversal média.

N = número de árvores por hectare.

Segundo ASSMANN (1970), a área basal do povoamento é a soma das áreas transversais individuais de todas as árvores e, também, pode ser obtida pelo produto do número de árvores (N) pela área transversal média.

 $^{^8\,\}text{HAMILTON},$ G. J. Forest mensuration handbook. London: Her Majestys Stationery Office, 1975. 274 p.

MACHADO (1978), (1981) testou o modelo de Chapman-Richards para estimar crescimento e produção em área basal, com dados de *Pinus taeda* L., na região central do Estado do Paraná, e comprovou que o modelo na sua forma monomolecular adaptou-se muito bem para descrever área basal por hectare em função da idade. Também obteve uma boa estimativa ao testar os valores assintóticos para diferentes densidades de plantação.

2.5 ALTURA

Cita FIGUEIREDO FILHO (1983), que nos trabalhos de inventários florestais, a variável altura têm sido considerada como uma restrição à rapidez nas medições de campo. Apesar das pesquisas que proporcionaram o aparecimento de instrumentos cada vez mais sofisticados para a medição da altura, ela ainda hoje é problemática quando se trata de povoamentos densos, em que a visualização da copa e da base, a partir de uma certa distância, é, muitas vezes inviável ou então demorada, elevando muito os custos dos levantamentos dendrométricos.

Muitos instrumentos foram desenvolvidos visando melhor eficiência nas medições indiretas das alturas de árvores. Estes instrumentos são denominados de "hipsômetros" e baseiam-se fundamentalmente, em relações angulares de triângulos retângulos, podendo-se citar entre os mais conhecidos e

utilizados os seguintes: Blume-Leis, Haga, Weiss, Suunto e Relascópio de Espelho de Bitterlich.

A altura dominante é outra variável muito importante em manejo florestal, porque ela reflete a qualidade do sítio e é relativamente independente da densidade da massa florestal. É uma variável necessária para cálculos de volume. Daí a importância de contar com estimativas de altura a partir de modelos matemáticos (relações hipsométricas).

Uma relação hipsométrica descreve a relação funcional entre as alturas e os diâmetros à altura do peito das árvores de um povoamento florestal. Resulta uma ferramenta de muita utilidade em manejo florestal, pois permite estimar alturas a partir de dados de diâmetro, esta última de medição mais rápida e menor custo. A relação hipsométrica é muito usada em processamento de dados de inventários, na aplicação de modelos de crescimento e produção, na determinação da altura dominante para caracterizar sítios, e outras.

Segundo STAGE (1975), o crescimento em altura é o efeito combinado de fatores ambientais е das características individuais da árvore. O crescimento em diâmetro é muito mais fácil de medir que o crescimento em altura, e responde aos mesmos determinantes do crescimento. Por outro lado, é muito mais afetado pela densidade que o crescimento em altura. O mesmo autor desenvolveu uma equação para predizer o crescimento em função do crescimento diamétrico, diâmetro, raio da copa e habitat. Ele partiu da função ln (h) = b_0 + b_1 ln (d) e obteve o diferencial de crescimento como: ∂ h = b_1 (h/d) ∂ d ou sua forma logarítmica:

$$ln(\partial h) = ln(\partial d) + ln(h) - ln(d) + ln(b_1)$$

A taxa de crescimento periódico foi obtida como:

 $\ln (h_2/h_1) = b_1 \ln (d_2/d_1)$ ou

 $ln(h_2) - ln(h_1) = b_1 [ln(d_2) - ln(d_1)]$

onde:

h = altura total

d = diâmetro à altura do peito

ln = logaritmo natural

 ∂ = diferencial

 h_1, h_2 = altura total no inicio e no final do período

 d_1, d_2 = diâmetro no inicio e no final do período

 b_i = coeficientes a serem estimados

HUANG; TITUS; WIENS (1992), compararam e evaliaram 20 funções não lineares para estimar altura a partir do diâmetro, para varios gêneros e espécies florestais, usando mínimos quadrados ponderados ($w_i=1/DAP_i$) para uniformizar a variância. O teste consistiu em analisar o quadrado médio do erro, os parâmetros através do teste "t" e a análise gráfica dos resíduos das alturas preditas. Os autores recomendaram o uso de funções sigmóides para descrever a relação altura - diâmetro. Os melhores resultados foram obtidos pela função Weibull, função logística modificada, Chapman-Richards e Schnute.

PARRESOL (1992) comentou a importância da relação altura total-diâmetro como componente na estimativa da produção. Esse autor empregou uma função exponencial com dados de Taxodium distichum (L.) Rich.. Neste caso, foram examinados homogeneidade e a normalidade dos resíduos e plotada a função com respeito as médias e as estimativas individuais através de intervalos de confiança.

A equação testada foi:

$$h = 1.3 + \exp (b_0 + b_1 \cdot d)^{b2} + e$$

onde:

h = altura total

exp = base do logaritmo natural

 b_i = coeficientes a serem estimados

d = diâmetro a 1,3 metros

e = resíduo

Citou ainda esse autor que para ajustar diferenças na predição de altura entre talhões, CURTIS⁹ adicionou a idade, enquanto LARSEN; HANN¹⁰ e WANG; HANN¹¹ adicionaram índice de sítio e área basal, na equação anterior. Incorporando-se na equação anterior a área basal (G) têm-se:

⁹CURTIS, R.O. Height-diameter and height-diameter-age equations for second-growth Douglas-Fir. For. Sci., Bethesda, v. 13, p. 365-375, 1967.

LARSEN, D.R.; HANN, D.W. Height-diameter equations for seventeen tree species in southwest Oregon. Oreg. State Univ. <u>For. Res. Lab. Res. Bull.</u>, Oregon, n. 49, 1987.

¹¹ WANG, C.; HANN, D.W. Height-diameter equations for sixteen tree species in the central western Willamette Valley of Oregon. Oreg. State Univ. For. Res. Lab. Res. Pap., Oregon, n. 51, 1988.

$$h = 1,3 + \exp(b_0 + b_1 \cdot d + b_3 \cdot G)^{b2} + e$$

CURTIS (1967) comparou equações que relacionam altura com diâmetro [h=f(d)] e altura com diâmetro e idade [h=f(d,I)] com dados de *Pseudotsuga menziessii*. Ele concluiu que para parcelas com remedições, o uso de uma equação h=f(d,I) para cada parcela, em cada medição, mostrou estimativas mais precisas e mais consistentes para volume, crescimento periódico e índice de sítio do que apenas h=f(d).

As equações selecionadas por CURTIS (1967) foram:

$$h = b_0 + b_1 \cdot (d)$$

$$h = b_0 + b_1 \cdot (1/d)$$

$$\log (h) = b_0 + b_1 \cdot (d)^{1/2} + b_2 \cdot (1/d) + b_3 \cdot (1/d^2)$$

$$\log (h) = b_0 + b_1 \cdot \log (d) + b_2 \cdot \log^2 (d)$$

$$\log (h) = b_0 + b_1 \cdot (1/d) + b_2 \cdot (1/I) + b_3 \cdot (1/(d \cdot I))$$

$$\log (h) = b_0 + b_1 \cdot \log (d) + b_2 \cdot \log (I)$$

onde:

h = altura total (m)

d = diâmetro à altura do peito (cm)

I = idade (anos)

log = logaritmo na base 10

BLANCO JORGE (1983) ajustou 7 equações de relação hipsométrica para povoamentos de *Pinus elliottii* Engelm, na Floresta Nacional de Três Barras, Estado de Santa Catarina. Nestes 7 modelos incluiu o modelo de CURTIS e o modelo de PRODAN modificado. Ambos incluiram o diâmetro (d) e a idade (I)

como variáveis independentes. O modelo de Prodan modificado foi melhor entre todos os testados.

Os modelos de CURTIS e PRODAN modificado são, respectivamente:

$$\log (h) = b_0 + b_1 \cdot (1/d) + b_2 \cdot (1/I) + b_3 \cdot (1/(d \cdot I))$$

$$d^2/(h-1.3) = b_0 + b_1 \cdot (d) + b_2 \cdot (d^2) + b_3 \cdot (d \cdot I)$$

CRECHI; FRIEDL; FERNÁNDEZ (1992), trabalhando com dados dos mesmos povoamentos, na amplitude de idades de 6 até 18 anos, ajustaram o modelo de Henriksen [h = b_0 + b_1 \cdot ln(d)] para cada idade, independentemente da densidade. O ajuste foi avaliado através das estatísticas R^2 (variando ditos valores de 0,45 até 0,71) e S_{yx} % (de 5,79 até 10,10%), assim como a análise gráfica dos resíduos.

2.6 MORTALIDADE

Segundo SOMERS et al. (1980), os estudos de crescimento têm sido reconhecidos como parte essencial para o manejo florestal. As predições da produção a curto prazo podem desconsiderar a mortalidade, porém nas projeções a longo prazo este componente constitui um aspecto de fundamental importância.

2.6.1 CAUSAS DA MORTALIDADE

ALDER (1980), explicitando a importância de se considerar a mortalidade nos modelos de crescimento e produção florestal, caracterizou quatro tipos de causas determinadoras da mortalidade:

- a) mortalidade no estabelecimento da floresta;
- b) mortalidade pela competição entre árvores;
- c) mortalidade causada por doenças e pragas;
- d) danos pela ação do vento ou incêndios.

Para esse autor, o primeiro tipo se refere ao porcentual de plantas que não sobrevivem ao primeiro ano, sendo este mais associado às técnicas de plantio e à natureza do solo (método e intensidade de preparação do solo), ou condições meteorológicas, aspecto do sítio, exposição e natureza do solo, idade das mudas, época de plantação, controle de ervas daninhas, formigas, adubação e outras.

O segundo tipo é a mortalidade dependente da densidade a qual pode ser resultado direto da supressão, porém é mais comumente de um efeito indireto, uma vez que as árvores de menor porte se tornam mais suscetíveis a outros agentes em relação às árvores maiores.

O terceiro e o quarto tipos podem ser dependentes ou não da densidade, mas em qualquer situação estes tipos de mortalidade são extremamente difíceis de serem preditos.

2.6.2 VARIÁVEIS PREDITIVAS DA MORTALIDADE

De acordo com CLUTTER (1980), o desenvolvimento de equações de predição da sobrevivência ou de mortalidade requer informações obtidas a partir de remedições em parcelas amostrais do tipo permanente. Essas informações quase sempre envolvem as seguintes variáveis:

- a) $I_1 = idade inicial;$
- b) N_1 = número de árvores na idade I_1 ;
- c) $I_2 = idade na remedição;$
- d) N_2 = número de árvores na idade I_2 .

Geralmente, essas informações são utilizadas para ajustar algum tipo de modelo que estima N_2 em função de I_1 , N_1 e I_2 . Salienta esse autor que em muitos casos, porém, a mais produtiva aproximação para o desenvolvimento de uma função de sobrevivência adequada envolve o uso de equações diferenciais para expressão da taxa de mortalidade.

REUKEMA; BRUCE (1977), MACHADO (1979) indicaram que, em média, a taxa de mortalidade é função da taxa de crescimento da floresta. Normalmente a mortalidade é maior nos melhores sítios (maior crescimento maior mortalidade por competição), exceto nos primeiros anos de estabelecimento do plantio.

2.6.3 MODELOS PREDITIVOS DA MORTALIDADE

BURKHART; CAO; WARE¹², SOMERS; ODERWALD; HARMS¹³, citados por HARMS (1983) indicaram que a predição da sobrevivencia é importante para estudos de predição do crescimento e da produção do povoamento florestal.

Um grande número de modelos matemáticos vem sendo usados com diferentes graus de sucesso ao descrever a relação entre sobrevivência ou mortalidade e alguma variável da população, porém um modelo completamente adequado ainda não foi desenvolvido.

Segundo BUCHMAN; PEDERSON; WALTERS (1983), os modelos matemáticos para predizer sobrevivência têm assumido as mais variadas formas: Citam que $\rm LEE^{14}$ e $\rm KEISTER^{15}$ usaram modelos lineares para predizer mortalidade do povoamento. GLOVER; $\rm HOOL^{16}$ e SOMERS et al. 17, usaram a função de Weibull para

¹² BURKHART, H.E.; CAO, Q.V; WARE, K.D. A comparison of growth and yield prediction models for loblolly pine. Div. of Forestry and Wildlife Resources, Va. Polytech. Inst. and State Univ., Osaka, FWS-2-81, 59 p, 1981.

¹³ SOMERS, G.L.; ODERWALD, R.G.; HARMS, W.R. Predicting mortality with a Weibull distribution. For. Sci., Bethesda, v. 26, n. 2, p. 291-300, 1980.

¹⁴ LEE, Y. Predicting mortality for even-aged stands of lodgepole pine. <u>For.</u> Chron. Alta, v. 47, p. 29-32, 1971.

¹⁵ KEISTER, T. D. Predicting individual tree mortality in simulated southern pine plantations. For. Sci., Bethesda, v. 18, p. 213-217, 1972.

¹⁶ GLOVER, G. R.; HOOL, J. N. A basal area ratio predictor of loblolly pine plantation mortality. For. Sci., Bethesda, v. 25, p. 275-282, 1979.

¹⁷ SOMERS, G. L.; ODERWALD, R. G.; HARMS, W. R.; LANGDON, O. G. Predicting mortality with a Weibull distribution. <u>For. Sci.</u>, Bethesda, v. 27, p. 291-300, 1980.

modelar mortalidade. BUCHMAN¹⁸ usou uma variante da função logística incluindo um parâmetro assintótico, para que a sobrevivência fosse menor que 1.

BUCHMAN; PEDERSON; WALTERS (1983) estimaram a taxa anual de sobrevivência (SR) com a equação:

$$SR = b_1 - [1/(1+exp(p))]$$

onde $p = b_2 + b_3 \cdot DGR^{b_4} + b_5 \cdot d$

onde:

SR = taxa anual de sobrevivência

DGR = taxa de crescimento diamétrico

d = diâmetro no início do período

b_i = coeficientes a serem estimados

Esse modelo proposto por BUCHMAN; PEDERSON; WALTERS (1983), têm similaridade com a função gama.

$$SR = b1 - [1/(1+exp(n))]$$

onde:

$$n = b_2 + b_3 \cdot DGR^{b_4} + b_5 \cdot (d-1)^{b_6} \cdot exp[-b_7 \cdot (d-1)]$$

Segundo HARMS (1983), a dificuldade de se obter um modelo satisfatório é devido a que a mortalidade é extremamente variável, dependendo da tolerância (habilidade de competir), do diferencial de crescimento da espécie e de fatores externos do sítio como água e nutrientes.

¹⁸ BUCHMAN, R. G. Mortality functions. In a generalized forest growth projection system applied to the Lake States region. U.S. For. Serv. <u>Gen.</u> <u>Tech. Rep.</u>, Asheville, n. 49, p. 47-55, 1979.

As curvas de sobrevivência têm a forma típica sigmoidal, que depende primariamente do número de árvores estabelecidas, do crescimento e da qualidade do sítio. Logicamente, a curva é descrita em termos de uma ou mais dessas variáveis. As variáveis mais comumente usadas são o número de árvores, a altura dominante e a idade. A altura dominante têm a vantagem de resumir nela, os efeitos da idade e da qualidade do sítio.

O modelo descrito por HARMS (1983), para *Pinus taeda* L., para uma grande dispersão de densidades com mortalidade relativamente regular foi:

$$S = 1/[1+(H/H_c)^r]$$

onde:

S = sobrevivência = N/N_i

N = número atual de árvores

N_i = número inicial de árvores

H = altura média

 H_c = altura média quando S = 0,5

 $ln H_c = b_0 + b_1 \cdot ln (N_i)$

r = expoente que define a curva

 $r = b_0 + b_1 \cdot (1/N_i)$

Para determinar a mortalidade (M):

$$M = (H/H_C)^r / [1+(H/H_C)^r]$$

SMALLEY; BAILEY (1974) usaram uma equação de sobrevivência para *Pinus taeda* L., sem tratamento silvicultural. O modelo desenvolvido foi:

 $\log (T_p/T_s) = A_p [0,0130 \log (T_p) + 0,0009 H - 0.0109 \sqrt{H}]$ onde:

 T_{s} = número de árvores sobreviventes por acre em uma idade Ap

 T_p = número de árvores plantadas por acre

 $A_p = idade de plantio$

H = altura dominante

O mérito dessa função é que quando $A_p=0$, $\log (T_p/T_s)=0$. Ou seja, $T_p=T_s$ e a equação prediz 100% de sobrevivência.

DELL et al. (1979) aplicaram este modelo usado por SMALLEY; BAILEY (1974) em Pinus elliottii var. elliottii Engelm., obtendo resultados satisfatórios e concluiram que, em todos os sítios, a porcentagem de sobrevivência decresceu com o aumento da idade. Nas idades jovens a sobrevivência diminuiu quando diminuiu a qualidade do sítio. Porém, devido à intensa competição nos melhores sítios, com o avanço da idade, a sobrevivência foi maior nos piores sítios.

MACHADO (1979), usando a equação de SMALLEY; BAILEY (1974) em reflorestamentos de *Pinus taeda* L. no Paraná, não detectou contribuição significtiva do termo " A_p " (idade do povoamento) para a melhoria da predição.

CLUTTER; JONES JUNIOR (1980), utilizando cálculo integral, construiram um modelo diferencial que limita a mortalidade entre 0 e 100%.

BUFORD; HAFLEY (1985) analisaram as distribuições probabilísticas de Weibull, gama, exponencial negativa e a função derivada do modelo de Richards e observaram que esta ultima apresentou o melhor ajuste.

SANQUETTA (1990), trabalhando a nível de povoamento com dados de *Pinus elliottii* Engelm., testou 7 modelos de mortalidade, cuja premissa fundamental foi as propriedades de limitação da mortalidade entre 0 e 100% do número de árvores plantadas, ou seja, o modelo não deve estimar um número de árvores remanescentes superior ao número de árvores plantadas, nem tampouco proporcionar estimativas negativas. Este autor concluiu que o modelo de SILVA¹⁹ foi o mais eficiente entre todos os modelos testados.

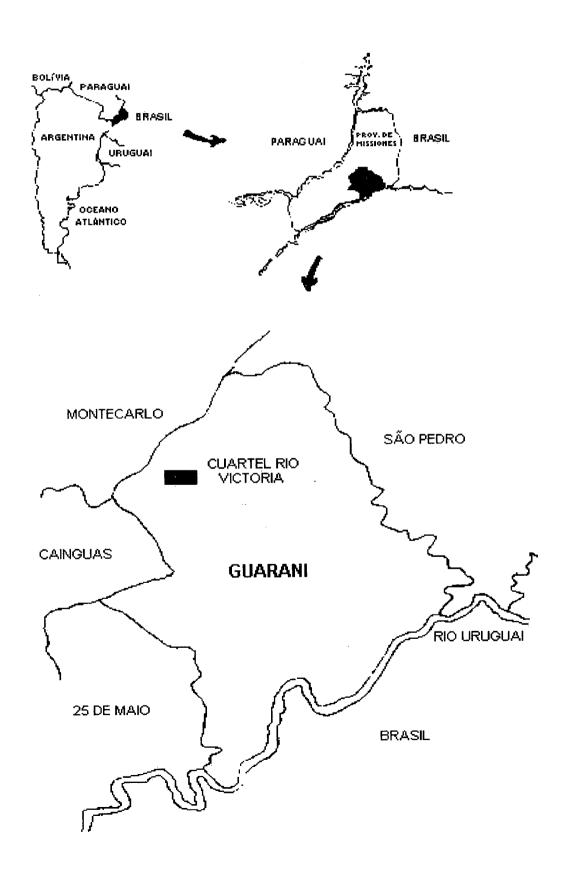
¹⁹ SILVA, J. A. A. <u>Dynamics of stand structure in fertilized slash pine plantation</u>. Athens, 1986. 139 f. Tese. (Ph. D.). University of Georgia.

3 MATERIAL E MÉTODOS

3.1 LOCALIZAÇÃO E CARACTERÍSTICAS DO EXPERIMENTO

Os dados para o desenvolvimento desta pesquisa foram obtidos de um experimento de densidades, instalado no Campo Anexo Cuartel Rio Victoria (INTA-Missiones), Departamento Guaraní, Província de Missiones, Argentina (Figura 2).

Suas coordenadas geográficas são 26° e 56' de latitude Sul e 54° e 24' de longitude Oeste, sendo a altitude de 534 m.


3.1.1 SOLO

O experimento encontra-se instalado em um "kandiudult", segundo SOIL SURVEY STAFF (1975), (1987), caraterizado por um desenvolvimento de solo maior que dois metros, sequência de horizontes A-Bt-C, vermelho, livre de cascalhos e fragmentos grossos, permeabilidade moderada, bem drenado, relativamente insaturado.

De acordo com MANCINI (1964), o relevamento edafológico da Província pertence à unidade cartográfica 9.

Segundo DE HOOGH; DIETRICH; AHRENS (1978), para a espécie em estudo, corresponde-se ao índice de sítio de 22 m (classe de sítio III), na idade índice de 25 anos.

FIGURA 2- LOCALIZAÇÃO DO EXPERIMENTO.

3.1.2 CLIMA

Segundo GOLFARI (1965), corresponde à região climática 5. Tal descrição indica clima subtropical ou montano baixo, subúmido, úmido ou perúmido, com regime uniforme.

No Quadro 1, apresentam-se as médias correspondentes a 17 anos de observações, efetuadas na Estação Meteorológica do Campo Anexo Cuartel Rio Victoria.

OUADRO 1- ESTATÍSTICAS CLIMÁTICAS. CUARTEL RIO VICTORIA.

Temperatura máxima absoluta	:	37,6°C
Temperatura máxima média	-	
Temperatura mínima absoluta	:	-4,1°C
Temperatura mínima média	:	14,8°C
Temperatura média	;	20 , 7°C
Dias com geadas agronômicas	:	6,5
Umidade relativa ambiente	:	72%
Precipitação média anual	:	2122,9 mm
Dias de chuva por ano	;	105
Balanço hídrico	:	sem deficiência

3.2 DESCRIÇÃO DO EXPERIMENTO

O experimento, instalado para avaliar o efeito da densidade sobre a produção, foi implantado em 1971, em uma área de 3 hectares, cujo sítio é considerado adequado para a espécie em estudo. Foram utilizadas sementes comerciais, sendo o

tamanho inicial das parcelas de 20 m x 50 m, as quais foram dispostas em blocos ao acaso com 3 repetições (Figura 3).

FIGURA 3- DESENHO DO EXPERIMENTO PARA AS DIFERENTES DENSIDADES DE PLANTAÇÃO.

8	3	1			
7	BLOCO I 2	4			
10	6	9			
5	3	5			
10	BLOCO II 7	6			
9	8	4			
6	2	1			
4	1	8			
9	BLOCO III 7	3			
10	5	2			

Foram testadas 10 densidades de plantação inicial compreendidas entre 625 e 4444 árvores por hectare (Quadro 2).

QUADRO 2- TRATAMENTOS OU DENSIDADES INICIAIS DO EXPERIMENTO.

Tratamento	Espaçamento	Densidade			
Número	de plantação	(arv/ha)			
	(m)				
1	1,5 x 1,5	4444			
2	1,5 x 2,0	3333			
3	2,0 x 2,0	2500			
4	$2,0 \times 2,5$	2000			
5	2,0 x 3,0	1666			
6	2,5 x 2,5	1600			
7	2,5 x 3,0	1333			
8	3,0 x 3,0	1111			
9	3,5 x 3,5	816			
10	4,0 x 4,0	625			

3.3 LEVANTAMENTO DE DADOS

O material desta investigação consta de 9 remedições efetuadas durante os anos de 1977, 1978, 1979, 1980, 1982, 1983, 1989, 1993 e 1995.

Em 1977 mediu-se a altura de todas as árvores; em 1979, 1980, 1982, 1989, 1993 e 1995 mediu-se a altura de uma amostra de árvores dentro de cada parcela, enquanto que em 1989 mediu-se ainda, a altura das árvores dominantes. As alturas foram medidas com hipsômetros trigonométricos.

Em todas as oportunidades citadas mediu-se também o diâmetro à altura do peito de todas as árvores vivas, utilizando-se sutas.

3.4 PROCESSAMENTO DOS DADOS

As seguintes etapas foram realizados no processamento dos dados:

3.4.1 AJUSTE DE RELAÇÕES HIPSOMÉTRICAS

Inicialmente gravou-se arquivos, um para cada ano de medição (1977, 1979, 1980, 1982, 1989, 1993 e 1995) e densidade de plantação, contendo os pares de diâmetros-alturas totais das árvores.

Os dois modelos testados para o ajuste da relação hipsométrica contêm diâmetro à altura do peito (d) e a idade (I) como variáveis independentes e altura total (h) como variável dependente:

- Modelo de Curtis

$$ln h = b_0 + b_1(1/d) + b_2(1/I) + b_3(1/(d \cdot I))$$

onde: ln = logaritmo neperiano

- Modelo de Blanco Jorge (Prodan modificado)

$$d^2/(h-1,30) = b_0 + b_1 \cdot d + b_2 \cdot d^2 + b_3 \cdot d \cdot I$$

A escolha do melhor modelo foi feita através da análise comparativa das estatísticas:

- a) Coeficiente de Determinação ajustado (R2);
- b) Erro Padrão de Estimativa em porcentagem (S_{yx} %);
- c) Distribuição gráfica dos resíduos em porcentagem em relação a variável diâmetro à altura do peito (d).

3.4.2 PROCESSAMENTO DOS DADOS POR PARCELA

Gravou-se e verificou-se os arquivos, um para cada parcela, tratamento, bloco e ano de medição, conformando-se desta maneira um total de 270 arquivos, os quais, contêm os dados do diâmetro de todos as árvores vivas da parcela correspondente.

Determinou-se diâmetro médio aritmético (\overline{d}) , a área transversal média (\overline{g}) , o diâmetro médio quadrático (dg), a altura média aritmética (\overline{h}) , o número de árvores vivas nas várias remedições (N/ha) e a área basal por hectare (G).

A Mortalidade foi determinada da seguinte maneira:

$$M\% = [1 - (N_a/N_i)] \cdot 100$$

onde:

M% = mortalidade em porcentagem

 N_a = número de árvores atual

N_i = número de árvores inicial

A sobrevivência foi determinada como:

$$S% = 100 - M%$$

onde:

S% = sobrevivência em porcentagem

M% = mortalidade em porcentagem

A altura dominante foi determinada como a altura média das 100 árvores de maiores diâmetros por hectare conforme ASSMANN e HUMMEL, citado por BURGER (1980), considerando-se, neste caso, um número de árvores proporcional à superfície da parcela. A altura das árvores dominantes foi estimada através de relações hipsométricas ajustadas conforme consta no item 3.4.1.

O volume com casca, até o diâmetro de topo de 7 cm com casca (v), foi estimado através de uma equação de volume para árvores individuais de *Araucaria* angustifolia (Bert.) O. Ktze., publicada por MARIOT; DE DIO (1982):

$$v = -0,007507 \cdot d + 0,001029 \cdot d^2$$

onde:

d = diâmetro à altura do peito da árvore (cm)

Obtidos os volumes das parcelas foram então extrapolados por hectare.

No Anexo 1, são apresentados os Quadros 13 até 22 contendo a base de dados advindos de cada parcela. As variáveis estudadas são apresentadas no Quadro 3:

QUADRO 3- LISTA DE VARIÁVEIS ESTUDADAS

variável	unidade	símbolo	
diâmetro médio aritmético	cm	d	
diâmetro médio quadrático	cm	dg	
área transversal média	cm ²	g –	
altura total média	m	h	
altura dominante média	m	h _{dom}	
volume da árvore média até 7 cm	m ³		
área basal	m ² /ha	G	
número de árvores vivas	arv/ha	N	
sobrevivência	0,0	S	
volume com casca até 7 cm	m³/ha	V	

3.4.3 EFEITO DA DENSIDADE NA PRODUÇÃO

O efeito da densidade de plantação sobre cada variável listada no Quadro 3 e da idade de medição, foram avaliados através de uma análise de variância e do teste de Tukey. Foi também feita uma análise das tendências observadas e idades a partir das quais, a densidade de plantação começa a influenciar negativamente sobre cada variável.

A análise de variância se efetuou a partir do valor médio por parcela, para cada variável e idade de medição, de acordo com a desenho utilizado (blocos completamente ao acaso com 3 repetições). Um valor crítico de 5% foi utilizado para o teste "F".

Após a análise de variância, empregou-se o teste de Tukey (teste de amplitude múltipla) a fim de detectar se existiam ou não diferenças significativas entre as médias dos tratamentos.

A representação gráfica das tendências das variáveis foi feita de duas maneiras:

- a) evolução das variáveis em função da densidade de plantação para as diferentes idades;
- b) evolução das variáveis em função da idade para as diferentes densidades de plantação.

3.4.4 MODELAGEM DA EVOLUÇÃO DAS VARIÁVEIS

3.4.4.1 Crescimento e Produção

Para modelar as variáveis consideradas (Quadro 3) foram testados dois modelos não lineares bastante conhecidos no campo florestal: o modelo biomatemático de Chapman-Richards e o modelo empírico de Prodan, os quais têm as seguintes características:

- a) origem;
- b) ponto de inflexão;
- c) ponto de tangência máximo;
- d) assíntota.
- O modelo biológico de Chapman-Richards têm a seguinte expressão:

$$W = A [1-b \cdot e^{-K} \cdot I]^{1/(1-m)}$$

onde:

W = tamanho na idade I

A = valor assintótico

m = localização do ponto de inflexão e forma da curva

K = inclinação média da curva

b = reflete somente a escolha do tempo zero

I = idade

e = base do logaritmo neperiano

Já o modelo empírico de Prodan:

$$W = I^2 / (b_0 + b_1 \cdot I + b_2 \cdot I^2)$$

onde:

W = tamanho na idade I

I = idade

b_i = coeficientes da equação

O modelo de Prodan é um modelo não linear, mas com a vantagem de ser intrínsecamente linearizável. Para linearizá-lo e então estimar seus coeficientes por regressão linear múltipla, faz-se:

$$I^2/W = (b_0 + b_1 \cdot I + b_2 \cdot I^2)$$

Sua vantagem em relação ao modelo de Chapman-Richards, é que uma vez obtidos os coeficientes por regressão linear múltipla, é possível utilizar os mesmos em regressão não linear (isto é muito importante, já que o sistema não linear de equações para estimativa dos coeficientes do modelo não

possui solução explícita e normalmente é resolvido por métodos, que calculam correções sucessivas a partir de uma solução preliminar, até que se encontre uma correção considerada desprezível).

No caso do modelo de Chapman-Richards (que não é intrínsecamente linearizável) é preciso ter conhecimento dos coeficientes para iniciar a regressão não linear, caso contrário pode-se estimar coeficientes irreais.

Após do ajuste do modelo de Prodan linearizado, o mesmo foi ajustado novamente na forma não linear. Este procedimento foi adotado para se efetuar comparações com o modelo de Chapman-Richards através das estatísticas, sem necessidade de ter que retransformar a variável dependente.

3.4.4.2 Sobrevivência (Árvores por Hectare)

Os dois modelos testados, para cada densidade de plantação, foram:

Modelo de Chapman-Richards modificado:

$$N_2 = N_1 - [N_1 ((1 - \exp (-b_1(I_2 - I_1)))^{b2})]$$

Modelo de Silva:

$$N_2 = N_1 \cdot \exp (b_1 (b_2^{12} - b_2^{11}))$$

onde:

 N_2 = número de árvores futuro

 N_1 = número de árvores presente

 I_2 = idade futura

 I_1 = idade presente

b_i = coeficientes de regressão não linear

exp = base do logaritmo neperiano

3.4.4.3 Regressão Não Linear

O algorítmo utilizado foi desenvolvido por Marquardt em 1963. É um algorítmo de mínimos quadrados para estimar parâmetros não lineares. Dado que o algorítmo para a regressão não linear é altamente dependente dos parâmetros iniciais, é importante desenvolver estimações iniciais razoáveis. No caso de selecionar-se parâmetros iniciais irreais, têm-se o risco do modelo convergir em um mínimo local em vez de um mínimo global. Esta situação pode ser evitada fazendo a análise várias vezes para diferentes condições iniciais (diferentes parâmetros iniciais).

DRAPER; SMITH (1981) provêm um número de sugestões práticas para desenvolver de maneira útil estimadores iniciais. O método de Marquardt é um compromisso entre o método de linearização de Gauss-Newton (ou Séries de Taylor) e o método descendente (steepest descent method), combinando o melhor de ambos, o que evita a maioria das limitações dos

outros métodos, sendo em consequência o mais aconselhável para quase todos os problemas não lineares.

3.4.4.4 Comparação dos Modelos na Estimativa das Variáveis

Para cada variável, ajustou-se um modelo utilizando os valores médios por parcela, nas diferentes idades de medição, ou seja, 27 pares de observações (9 idades e 3 repetições).

Para o ajuste dos modelos de Chapman-Richards, Chapman-Richards modificado e Silva, os coeficientes iniciais utilizados na regressão não linear foram números sem nenhum antecedente conhecido para a espécie em estudo. Para o ajuste do modelo de Prodan, os coeficientes foram estimados inicialmente por regressão linear múltipla.

O ajuste dos modelos para descrever a evolução das diferentes variáveis foi avaliado através das seguintes estatísticas:

- a) R_{aj}^2 ;
- b) S_{vx}%;
- c) análise gráfica dos resíduos.

3.4.5 PREDIÇÕES DE CRESCIMENTO DE POVOAMENTOS FLORESTAIS DESBASTADOS A PARTIR DE POVOAMENTOS FLORESTAIS NÃO DESBASTADOS.

Dadas as características deste experimento, a possibilidade de utilizar curvas de crescimento desenvolvidas a partir de povoamentos não desbastados para descrever o crescimento de povoamentos desbastados, foi aplicado neste trabalho, a partir de hipóteses apresentadas por autores como PIENAAR (1965) e MARSH; BURGERS (1973).

(1965), trabalhando com PIENAAR Pinus elliottii, concluiu que: "Para uma grande amplitude de regimes de manejo, o crescimento de um povoamento desbastado é idêntico a um povoamento não desbastado com quantidade а mesma de crescimento vivo acumulado e a mesma densidade (N/ha), mas não necessariamente em uma mesma idade".

Segundo MARSH; BURGERS (1973), a partir de modelos de crescimento baseados em experimentos de densidade, podem ser obtidas predições exatas do crescimento de povoamentos sujeitos a uma variedade de tratamentos diferentes de desbastes. A base deste método é a hipótese de Marsh, aplicável ao Gênero Pinus e provavelmente com certas modificações para outras espécies como por exemplo Eucalyptus grandis: "O crescimento de povoamentos desbastados é equivalente a povoamentos não desbastados com o mesmo número de árvores por unidade de superfície e densidade (medida em área basal ou volume por unidade de área), porém a

uma idade mais jovem (a idade na qual ele teria a mesma área basal ou volume por unidade de área)".

3.4.6 PRODUÇÃO BRUTA DE MADEIRA EM POVOAMENTOS FLORESTAIS DESBASTADOS E NÃO DESBASTADOS.

A Teoria de Möller, citado por AHRENS (1992) preconiza que em um povoamento florestal não desbastado, a produção bruta por unidade de área, a longo prazo, é aproximadamente igual à produção total que seria obtida pelo valor acumulado das produções intermediárias (desbastes) acrescido da produção obtida no corte final, se o mesmo tivesse sido submetido a um regime de desbastes.

Desta forma, os resultados observados na grande maioria dos estudos sobre desbaste suportam a conclusão geral de que tais intervenções não afetam significativamente a produção bruta total em volume por hectare, exceto em condições extremas de densidade (quando, devido a baixa densidade, o sítio é sub-utilizado durante algum tempo, ou quando a densidade excessiva conduz as árvores a uma competição por luz, água e nutrientes muito forte).

Utilizando-se as hipóteses do ítem 3.4.5, foi possível testar a Teoria de Möller.

4 RESULTADOS E DISCUSSÃO

4.1 AJUSTE DE RELAÇÕES HIPSOMÉTRICAS

Os coeficientes dos modelos de Curtis e Blanco Jorge, bem como as estatísticas de ajuste são apresentados na Tabela 1.

TABELA 1- COEFICIENTES ESTIMADOS É ESTATÍSTICAS DE AJUSTE DAS EQUAÇÕES DE RELAÇÃO HIPSOMÉTRICA.

Modelo	coefi-	Densidades (arv/ha)									
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
	ъ0	3,531	3,410	3,483	3,529	3,574	3,429	3,529	3,535	3 , 587	3,627
Curtis	b1	- 7 , 53	-6,82	-8,08	-9,10	-10,3	-7, 22	-8,54	-8,74	-12,2	-12,3
	b2	-7, 07	-5 , 99	-6,50	-6 , 51	-7, 03	-6.,6	-6 , 85	-7 , 13	-6 , 78	-7,61
	b3	26,19	17,95	25,02	27,56	37,89	19,12	26,94	29,12	40,67	45 , 70
Esta-	R^2_{aj}	0,951	0,956	0,967	0,968	0,970	0,970	0,971	0,972	0,968	0,976
tísticas	S _{yx} %	7,23	7,40	6,15	7,30	6,55	7,02	6,90	7,02	6,58	6,13
	ъ0	-1,70	-0 , 96	-1,04	-0 , 55	-0,23	-0,36	0,669	1,460	2,157	2,026
Blanco	b1	1,679	1,561	1,668	1,687	1,673	1,620	1,610	1,609	1,618	1,707
Jorge	b2	0,037	0,040	0,039	0,036	0,036	0,039	0,038	0,038	0,038	0,038
	b3	-0,05	-0,04	-0,05	-0,05	-0,05	-0,05	-0, 05	-0,05	-0,05	-0 , 05
Esta-	R^2_{aj}	0,982	0,975	0,975	0,963	0,965	0,966	0,959	0,960	0,973	0,966
tísticas	S _{yx} %	9,33	9,68	8,65	9,76	9,85	8,48	9,75	9,83	8,14	7,90

Os valores de R_{aj}^2 obtidos no ajuste do modelo de Curtis variaram de 0,951 até 0,976 e os valores de S_{yx} % variaram de 6,13 até 7,40. No modelo de Blanco Jorge os valores de R_{aj}^2 variaram de 0,959 até 0,982 e os valores de S_{yx} % variaram de 7,9 até 9,85.

Os valores elevados de R_{aj}^2 (em torno de 0,97), podem ser devido a autocorrelação das alturas por medições sucessivas das mesmas árvores, se bem que estatísticas semelhantes foram

obtidos por TREVIZOL JUNIOR (1985) com *Eucalyptus grandis*, no Munícipio de Bom Despacho, Minas Gerais, Brasil.

Através de uma análise gráfica, foi possível observar que o modelo de Curtis descreveu a evolução dos dados sem tendenciosidade para toda a amplitude de diâmetros e idades analisadas, o que não ocorreu com o modelo de Blanco Jorge que geralmente subestima a altura total nas classes de diâmetro (d) inferiores e superestima nas superiores correspondentes a cada idade.

Nas análises gráficas dos resíduos, observou-se ainda que desvios em termos porcentuais dos valores estimados relação aos valores reais em função do diâmetro a 1,3 metros (d) no caso do modelo de CURTIS (1967), apresentou variações de ±20% 625 árvores/ha até ±30% para o tratamento de para 4444 distribuição relativamente árvores/ha, homogênea COM dos resíduos para a amplitude de diâmetros e idades analisadas. outro lado, o modelo de BLANCO JORGE (1983), apresentou variações de -30 até +50 para 625 árvores/ha e de -50 até +40 para 4444 árvores/ha, com uma distribuição heterogênea resíduos.

Com base nessas observações, recomenda-se que a análise do ajuste não seja realizada somente através das estatísticas R_{aj}^2 e S_{yx} %, mas também através de uma avaliação gráfica do modelo frente aos dados observados, ou alternativamente uma análise de resíduos.

Em função das estatísticas analisadas e principalmente com base na distribuição gráfica dos resíduos, a equação hipsométrica de Curtis foi selecionada sendo obtida uma equação para cada densidade (tratamento), totalizando assim 10 equações hipsométricas.

Na Figura 4, é apresentado um exemplo para a densidade de 1111 arv/ha e diferentes idades de medição, assim como a distribuição dos resíduos em porcentagem na Figura 5. Observa-se na Figura 4 que as curvas ajustadas descrevem adequadamente a relação altura-diâmetro para cada uma das idades estudadas. Na medida que aumenta a idade, as curvas que descrevem a relação altura-diâmetro, deslocam-se para acima e para a direita, acompanhando o crescimento em diâmetro e altura, sendo as curvas nas idades jovens mais íngremes em relação às curvas nas idades mais velhas.

Os resultados obtidos por CRECHI; FRIEDL; FERNÁNDEZ (1992), trabalhando com dados do mesmo experimento, não são comparáveis, já que não foi feito como nesta análise, um ajuste para cada densidade de plantação.

FIGURA 4- EVOLUÇÃO DA RELAÇÃO HIPSOMÉTRICA PARA DIFERENTES

IDADES DE MEDIÇÃO NA DENSIDADE DE 1111 ARV/HA

(EQUAÇÃO DE CURTIS).

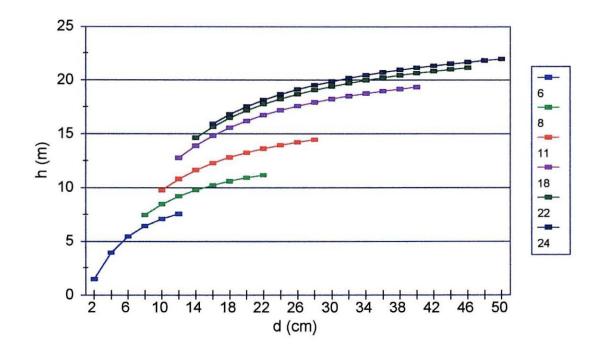
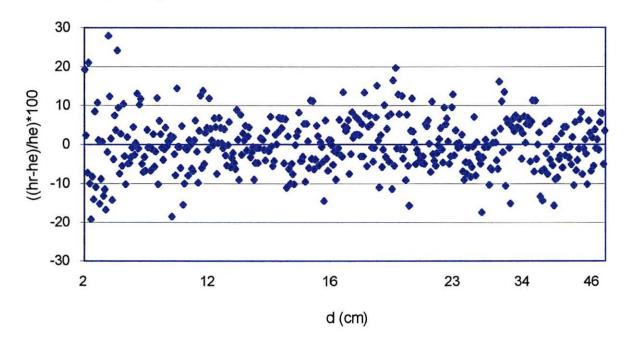



FIGURA 5- DISTRIBUIÇÃO DOS RESÍDUOS EM PORCENTAGEM EM FUNÇÃO DO DAP, PARA A DENSIDADE DE 1111 ARV/HA (EQUAÇÃO DE CURTIS).

4.2 ANÁLISE DE VARIÂNCIA E TESTE DE COMPARAÇÕES DE MÉDIAS DE TRATAMENTOS.

Como produto do processamento dos dados obteve-se para cada uma das variáveis e para as 9 idades de medição (6, 7, 8, 9, 11, 12, 18, 22 e 24 anos), 3 tabelas de análises de variância, de médias por tratamentos e de resultados da aplicação do teste de Tukey. Um exemplo das mesmas, correspondentes ao diâmetro médio aritmético na idade de 6 anos é apresentado nas Tabelas 2, 3 e 4.

TABELA 2- ANÁLISE DE VARIÂNCIA PARA O DIÂMETRO MÉDIO ARITMÉTICO NA IDADE DE 6 ANOS.

Fonte de variação	Soma de	quadrados	g.l.	Quad	lrado méd	io F	Nível de signif.
Tratamento	48,4701	.20	9	5,	3855689	6,896	0,0003
Repetição	14,1610)47	2	7,	0805233	9,066	0,0019
Residuo	14,0582	220	18	0,	7810122		
Total	76,6893	387	29				

TABELA 3- RESULTADOS DO DIÂMETRO MÉDIO ARITMÉTICO NA IDADE DE 6 ANOS.

Nível	Quantida	de Média	Erro padrão da média	Intervalo de 95% para	
Média ge	eral 30	10,947333	0,1613497	10,608267	11,286400
Tratame	ntos				
1	3	8,540000	0,5102327	7,467779	9,612221
2	3	8,953333	0,5102327	7,881112	10,025555
3	3	10,206667	0,5102327	9,134445	11,278888
4	3	10,763333	0,5102327	9,691112	11,835555
5	. 3	11,383333	0,5102327	10,311112	12,455555
6	3	11,210000	0,5102327	10,137779	12,282221
7	3	12,003333	0,5102327	10,931112	13,075555
8	3	11,826667	0,5102327	10,754445	12,898888
9	3	12,420000	0,5102327	11,347779	13,492221
10	3	12 , 166667	0,5102327	11,094445	13,238888
Repetiçã	ão (blocos)				
1	10	11,476000	0,2794660	10,888720	12,063280
2	10	11,389000	0,2794660	10,801720	11,976280
3	10	9,977000	0,2794660	9,389720	10,564280

TABELA 4-	TESTE	DE	TUKEY	PARA	0	DIÂMETRO	MÉDIO	ARITMÉTICO	NA
	IDADE	DE	6 ANOS	.					

Tratamentos	Quantidade	Média	Grupos homogêneos			
1	3	8,540000	С			
2	3	8,953333	Сþ			
3	3	10,206667	сbа			
4	3	10,763333	сра			
6	3	11,210000	ba			
5	3	11,383333	b a			
8	3	11,826667	a			
7	3	12,003333	a			
10	3	12,166667	a			
9	3	12,420000	a			

Os resultados que constam nessas Tabelas foram obtidas para cada variável analisada, a partir de arquivos contendo valores médios por parcela, para as 3 repetições e para cada idade de medição. Esses resultados foram obtidos de forma automática através de pacotes estatísticos em um computador.

Na Tabela 2, observa-se a análise de variância correspondente a 10 tratamentos e 3 repetições, da variável diâmetro médio à altura do peito na idade de 6 anos.

O valor de F calculado para tratamentos é de 6,896 (5,3855689/0,7810122) que corresponde a um nível de significância de 0,0003, ou 0,03% (o valor de 0,0003, indica a probabilidade que não existam diferenças significativas entre tratamentos, ou seja, rejeitar a hipótese nula sendo ela verdadeira). Indicando que há diferenças significativas entre os tratamentos (pelo menos um tratamento é diferente dos demais), já que esta probabilidade é muito menor do que o limite estabelecido de 5% (probabilidade de 95%).

Dito de outra maneira, o valor de F calculado de 6,896 é comparado com o F tabelar, com graus de liberdade dos tratamentos e resíduo, para um nível de probabilidade de 95%, ou seja:

$$F calc = 6,896$$

$$F(9;18;0,05) = 2,46$$

Como 6,896 > 2,46; existem diferenças significativas entre tratamentos.

Observa-se também diferenças significativas entre repetições, que correspondem com o desenho utilizado.

Na Tabela 3, observa-se o valor da média geral, a média de 3 repetições para cada tratamento, a média para cada um dos 3 blocos e do erro padrão da média (S_x^-) , o qual para os tratamentos foi calculado como:

$$S_{x}^{-} = \sqrt{QME / r}$$

onde:

 S_{x}^{-} = erro padrão da média

QME = quadrado médio do erro ou resíduo

r = repetições (número de blocos)

O valor do erro padrão para a média geral e para blocos é obtido utilizando na fórmula anterior, valores de r=30 e r=10, respectivamente.

Observa-se também duas colunas que indicam os limites inferior e superior do intervalo de confiança para a média ao nível de probabilidade de 95%, obtido através da fórmula:

$$x \pm t_{(n, \alpha/2)} \cdot S_x^-$$

onde:

x = média

t = t de Student

n = graus de liberdade do erro (resíduo)

 α = nível de significância (0,05)

 $\alpha/2 = 0,025$

 S_{x}^{-} = erro padrão da média

Na Tabela 4, observa-se as médias por tratamento ordenadas de menor a maior, e na coluna seguinte os grupos homogêneos (que não apresentam diferenças significativas entre elas) encontram-se na mesma coluna identificados por "a", "b" e "c", resultado da aplicação do teste de Tukey.

Passos seguidos:

- a) calcular o erro padrão da média, $S_x^- = 0,5102327;$
- b) obter da tabela de Tukey o valor "q", com grau de liberdade do erro, nível α de probabilidade e "t" tratamentos, $q(t,gl\ erro,\ \alpha)=q(10;18;0,05)=5,07;$
- c) determinar o comparador de Tukey: $T = S_x^-.q$ $T = 0.5102327 \cdot 5.07 = 2.587$ cm;
- d) a partir daqui, faz-se a diferença entre a média que apresentou o maior valor e o comparador de Tukey.

No exemplo: 12,420 - 2,587 = 9,833 cm, ou seja, todos os tratamentos cuja média seja igual ou maior a 9,833 não apresentam diferenças significativas em relação à maior média (tratamentos 3 até 10).

A partir da segunda maior média utiliza-se o mesmo comparador, neste caso seria: 12,166667 - 2,587 = 9,5797. Como neste caso o grupo segue sendo o mesmo, faz-se o cálculo a partir da terceira maior média. E assim até que o tratamento com a menor média se encontre dentro de um grupo homogêneo.

4.2.1 EFEITO DA DENSIDADE NO CRESCIMENTO MÉDIO DA ÁRVORE

4.2.1.1 Diâmetro Médio Aritmético (\overline{d}) , Diâmetro Médio Quadrático (dg), Área Transversal Média (\overline{g}) e Volume Médio (\overline{v}) .

Estas variáveis foram agrupadas devido à similaridade nos seus comportamentos. A densidade de plantio influenciou de maneira significativa a evolução destas 4 variáveis, conforme mostram as Figuras 6 a 13.

Nas Figuras 6 a 9 apresenta-se o comportamento das variáveis em função da densidade de plantação para cada idade de medição, observando-se uma relação inversa com a densidade. O efeito da densidade manifesta-se através da inclinação das curvas, cujo aumento com a idade evidência que as densidades baixas possuem cada vez maior velocidade de crescimento, em relação às altas. Por outro lado, o efeito da idade se caracteriza por um deslocamento vertical das curvas.

As Figuras 10 a 13 mostram a evolução das variáveis em função dos anos de medição para diferentes densidades de

plantação, observando-se uma relação direta com a idade. Observa-se que o efeito da idade se manifesta através da inclinação das curvas, enquanto que o efeito da densidade é indicado por um deslocamento vertical das mesmas. Resulta notório, o distanciamento progressivo das curvas correspondentes às duas menores densidades em relação às demais.

No caso do diâmetro médio aritmético e do diâmetro médio quadrático os resultados são coincidentes com aqueles obtidos por SPELTZ; MONTEIRO; CORDEIRO (1980), FAHLER; DI LUCCA (1980), PUJATO; MARLATZ (1983), FRIEDL; FERNÁNDEZ; CRECHI (1991b), que trabalharam com dados da mesma espécie.

Entre 6 até 12 anos e para as 4 variáveis as médias obtidas para as duas menores densidades de plantação (625 e 816 árvores por hectare) superaram significativamente às médias correspondentes às demais densidades. Aos 12 anos já superavam a todas, ou seja desde 4444 até 1111 árvores por hectare, situação esta que se manteve até os 18 anos. Aos 22 anos aconteceu um processo inverso, ou seja, um número cada vez maior de densidades a partir de 625 arv/ha não apresentaram diferenças estatísticamente significativas entre as médias dos tratamentos, aos 24 anos não se observa diferenças entre as densidades de 625 até 1333 arv/ha para as duas primeiras variáveis (\overline{d} e dg) e de 625 até 1111 arv/ha para as outras duas (\overline{g} e \overline{v}).

FIGURA 6- EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

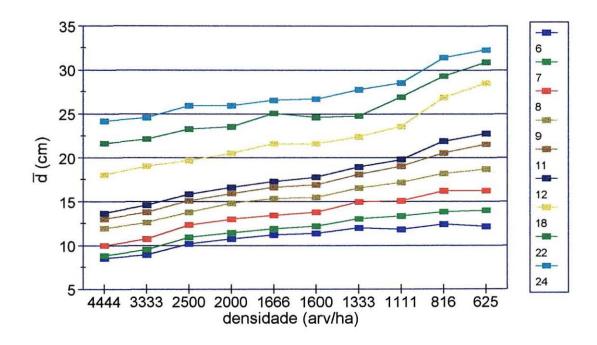


FIGURA 7- EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

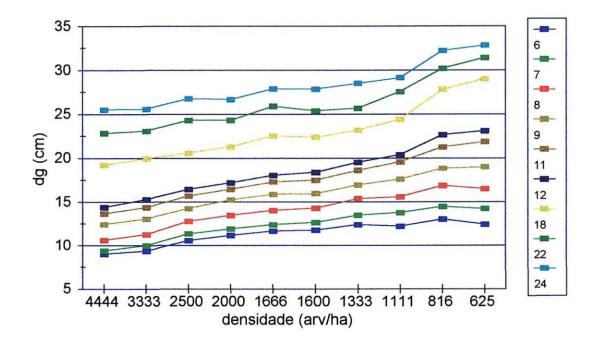


FIGURA 8- EVOLUÇÃO DA ÁREA TRANSVERSAL MÉDIA EM FUNÇÃO DA

DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

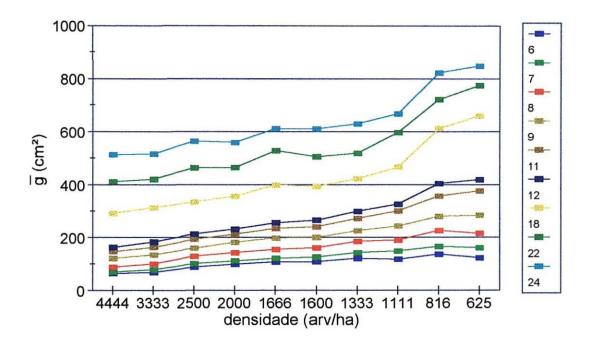


FIGURA 9- EVOLUÇÃO DO VOLUME DA ÁRVORE MÉDIA EM FUNÇÃO DA

DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

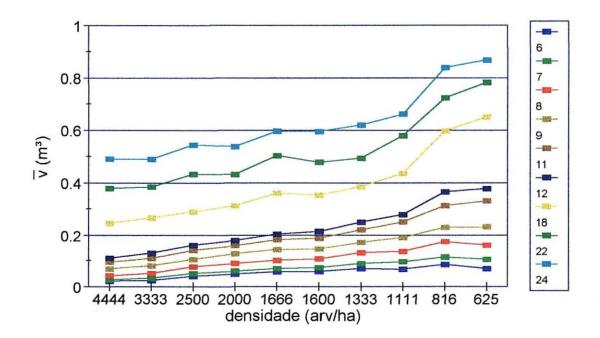


FIGURA 10- EVOLUÇÃO DO DIÂMETRO MÉDIO ARTIMÉTICO EM FUNÇÃO DA IDADE

DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

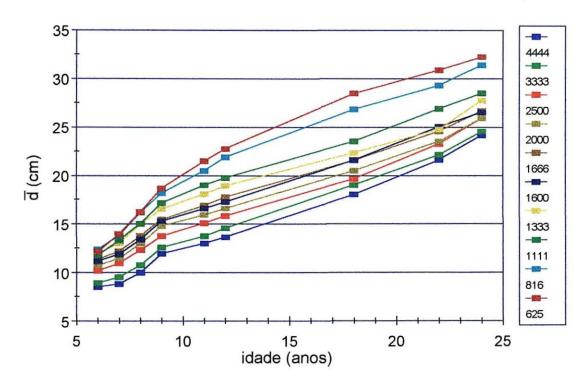


FIGURA 11- EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

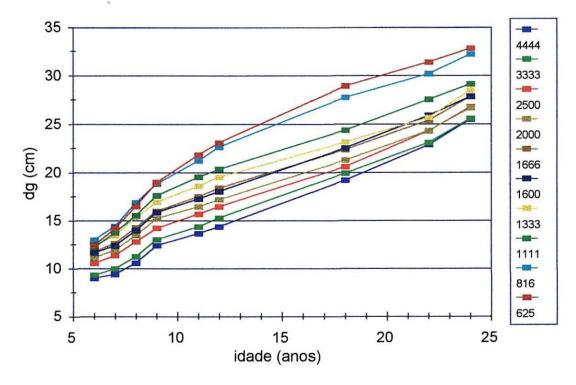


FIGURA 12- EVOLUÇÃO DA ÁREA TRANSVERSAL MÉDIA EM FUNÇÃO DA IDADE

DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

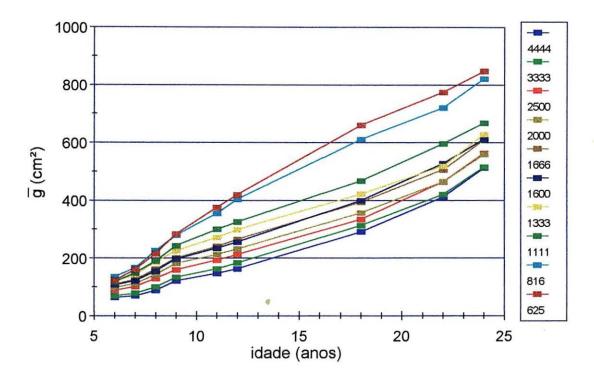
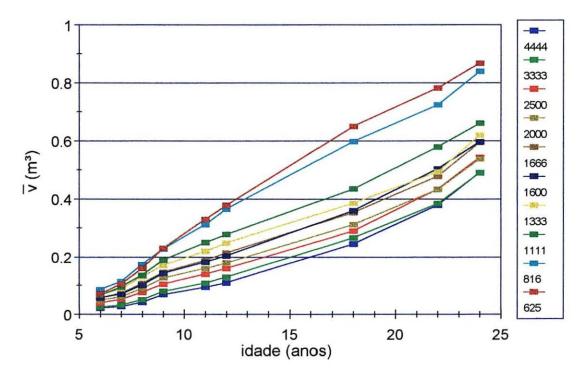



FIGURA 13- EVOLUÇÃO DO VOLUME DA ÁRVORE MÉDIA EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

Por outro lado não se observou diferenças estatísticamente significativas entre as médias correspondentes às duas menores densidades de plantação, ao longo de todo o período estudado.

A maior concorrência nas maiores densidades, trouxe como conseqüência maior mortalidade, principalmente nas árvores suprimidas e dominadas. Isto se traduziu em um aumento da média correspondente, a qual é diretamente proporcional à idade. Desta maneira, o número de médias de tratamentos que não se diferencia entre si é cada vez maior. Se continuar a tendência observada, é de se esperar que nos próximos anos não existam diferenças significativas entre as médias de todos os tratamentos.

No Quadro 4 são apresentados as idades, onde através do teste de Tukey começou a observar-se efeitos significativos da concorrência sobre as 4 variáveis analisadas. Este efeito reflete-se em uma diminuição no crescimento ocorrido nas maiores densidades em relação às duas menores, nas quais, os indivíduos podem ser considerados equivalentes a árvores de crescimento livre (LARSON, 1963).

QUADRO 4- RELAÇÕES ENTRE A IDADE DE MANIFESTAÇÃO DA CONCORRÊNCIA E DENSIDADE DE PLANTAÇÃO.

Densidade de plantação	o Idade
(arv/ha)	(anos)
4444 - 3333	próximo de 6
2500 - 2000,	entre 6 e 7
1666 - 1600	entre 7 e 8
1333	entre 8 e 9
1111	entre 9 e 11

O Quadro 4 mostra que, para cada densidade de plantação, existe uma idade a partir da qual a concorrência afeta significativamente o crescimento das variáveis estudadas, sendo esta idade inversamente proporcional a densidade e define o momento em que o primeiro desbaste deve ser realizado visando não afetar o crescimento das variáveis em questão.

4.2.1.2 Altura Média

A densidade do plantio influenciou de maneira significativa a evolução desta variável, conforme mostram as Figuras 14 e 15.

Na Figura 14, é apresentado o comportamento da altura média em função da densidade de plantação para as diferentes idades de medição, observando-se uma relação inversa com a densidade a partir dos 7 anos até os 18. Já nas idades de 22 e 24 anos essa tendência tende a desaparecer. Observa-se ainda, que o efeito da densidade se manifesta através da inclinação das curvas, cujo aumento com a idade evidencia que as densidades baixas possuem cada vez maior velocidade de crescimento em altura com relação às altas, no intervalo de 7 até 18 anos. Por outro lado, o efeito da idade se caracteriza por um deslocamento vertical das curvas.

FIGURA 14- EVOLUÇÃO DA ALTURA MÉDIA EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

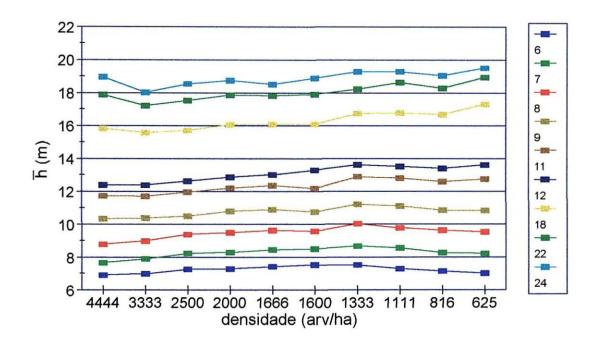



FIGURA 15- EVOLUÇÃO DA ALTURA MÉDIA EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

Na Figura 15, observa-se a evolução da altura média em função dos anos de medição para diferentes densidades plantação, tendo-se uma relação direta com a idade. Observa-se que o efeito da idade se manifesta através da inclinação das curvas, enquanto que o efeito da densidade por um deslocamento vertical das mesmas. Verifica-se também distanciamento um das curvas correspondentes às guatro densidades em relação às demais até os 18 anos, a partir dessa idade, a amplitude diminuiu nas idades de 22 e 24 anos.

Exceto aos 6 anos, nas demais idades obteve-se um efeito estatísticamente significativo da densidade de plantação sobre a altura média. Estes resultados diferem dos obtidos por SPELTZ; MONTEIRO; CORDEIRO (1980) ao evaliar uma experiência similar com a mesma espécie e também FAHLER; DI LUCCA (1980) e PUJATO; MARLATZ (1983), trabalhando com dados de uma só idade.

Não obstante os resultados não sejam totalmente comparáveis, já que no caso de FAHLER; DI LUCCA (1980) dividiuse o intervalo de densidades estudadas em densidades altas e baixas, enquanto nesta pesquisa não se realizou tal agrupamento.

No caso de PUJATO; MARLATZ (1983), para o cálculo da altura média considerou-se somente as árvores classificadas como de densidade perfeita, enquanto que neste trabalho considerou-se todas as árvores vivas.

No caso de SPELTZ; MONTEIRO; CORDEIRO (1980) os dados também não são totalmente comparáveis pelo fato de ter-se intervalos de densidades diferentes, já que em dito estudo foram

avaliadas as densidades de 1111 a 4444 árvores por hectare, enquanto que nesta pesquisa tinha-se ainda as densidades de 625 e 816 árvores por hectare.

Outra diferença em relação a esses trabalhos, refere-se ao processamento dos dados. Aqui se realizou o ajuste de relações hipsométricas que permitiram estimar as alturas médias por idades, enquanto que naqueles (FAHLER; DI LUCCA, 1980; PUJATO; MARLATZ, 1983 e SPELTZ; MONTEIRO; CORDEIRO, 1980) não se procedeu desta maneira.

No caso de FRIEDL; FERNÁNDEZ; CRECHI (1991b) o ajuste de relações hipsométricas para estimar as alturas médias segundo CRECHI; FRIEDL; FERNÁNDEZ (1992), não são comparáveis, por que dito ajuste foi feito globalmente por idade para todas as densidades, enquanto que neste estudo fez-se o ajuste por idade para cada densidade.

A não significância estatística entre as médias dos tratamentos na idade de 6 anos, deve-se ao fato de que a concorrência ainda não tinha afetado a variável altura média.

Entre os 7 e os 18 anos, as médias obtidas para as 4 menores densidades de plantação (625 até 1333 árvores por hectare) superaram significativamente às correspondentes a um número cada vez maior de densidades. Aos 18 anos já superavam a todas, desde 4444 até 1600 árvores por hectare; aos 22 anos observa-se um processo inverso, ou seja, um número cada vez maior de densidades não se diferenciam, aos 24 anos praticamente

não existem diferenças estatísticamente significativas entre as médias das densidades à exceção da densidade de 3333 arv/ha.

Como verificado para d, dg, g e v, a maior concorrência nas maiores densidades trouxe como consequência maior mortalidade, principalmente nas árvores suprimidas e dominadas. Isto se traduziu em um aumento da altura média, e assim, o número de médias de tratamentos que não se diferenciam entre si é cada vez maior. A continuar com esta tendência, é de se esperar que nos próximos anos não existam diferenças significativas entre as médias de todos os tratamentos.

Por outro lado, não se observou diferenças estatísticamente significativas entre as médias correspondentes às 4 menores densidades de plantação, em todo o período estudado.

No Quadro 5, apresentam-se as idades, onde através do teste de Tukey começou a observar-se um efeito significativo da concorrência sobre as alturas médias. Tal efeito reflete-se numa diminuição no crescimento ocorrido nas maiores densidades, em quatro menores, cujos indivíduos podem considerados equivalentes a árvores de crescimento (LARSON, 1963). Isto indica que para cada densidade de plantação idade a partir da qual a concorrência afeta existe uma significativamente o crescimento da altura média, sendo esta idade inversamente proporcional à densidade. Isto define o momento de realização do primeiro desbaste na medida que se pretenda não afetar o crescimento da mesma.

QUADRO 5- RELAÇÕES ENTRE IDADE DE MANIFESTAÇÃO DA CONCORRÊNCIA SOBRE A ALTURA MÉDIA E DENSIDADE DE PLANTAÇÃO.

Densidade de plantação	o Idade
(arv/ha)	(anos)
4444	próximo de 7
3333	entre 7 e 8
2500	entre 8 e 9
2000-1600	entre 9 e 11

4.2.1.3 Altura Dominante

Observou-se a ausência de efeitos estatísticamente significativos da densidade de plantação sobre a altura dominante em todo o conjunto das idades analisadas, conforme mostram as Figuras 16 e 17.

A Figura 16 mostra o efeito da densidade de plantação sobre altura dominante. Pode observar-se que a altura média dominante apresenta para todos os anos de medição, um comportamento independente da densidade.

O efeito da idade sobre a altura dominante está na Figura 17, para as diferentes densidades de plantação. A altura dominante mostra uma tendência crescente em função da idade. No entanto, as curvas correspondentes às diferentes densidades resultam praticamente sobrepostas entre si, coerentemente com as diferenças não significativas detectadas.

FIGURA 16- EVOLUÇÃO DA ALTURA DOMINANTE EM FUNÇÃO DA DENSIDADE

DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

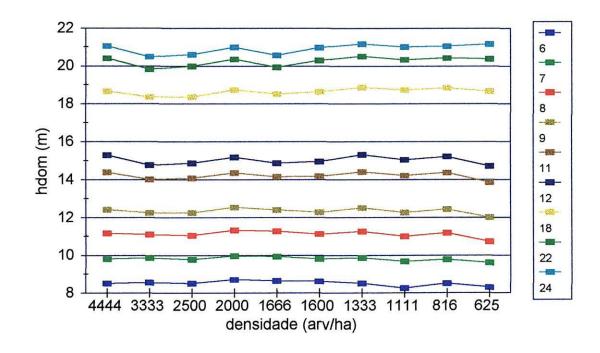


FIGURA 17- EVOLUÇÃO DA ALTURA DOMINANTE EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

Este resultado coincide com a bibliografía florestal segundo a qual, esta variável depende mais da qualidade de sítio do que da densidade da floresta.

É justamente este comportamento uma das principais razões, pelas quais recomenda-se seu uso em avaliações de sítio (FERNÁNDEZ; CRECHI; FRIEDL, 1991, 1994; FRIEDL; FERNÁNDEZ; CRECHI, 1991a). Os resultados diferem dos obtidos para altura média, onde os efeitos da densidade foram significativos.

4.2.2 EFEITO DA DENSIDADE NO CRESCIMENTO POR UNIDADE DE ÁREA

4.2.2.1 Número de Árvores

Verificou-se um efeito estatísticamente significativo da densidade de plantação sobre o número de árvores, para todos os anos de medição. Este resultado coincide com aquele obtido por FERNÁNDEZ; CRECHI; FRIEDL (1991), para a mesma experiência.

Na Figura 18, observa-se que a diminuição do número de árvores foi diretamente proporcional a densidade inicial da plantação.

Na Figura 19, apresenta-se o número de árvores vivas em função da idade, correspondente às diferentes densidades de plantação. Observa-se que o efeito da idade se caracteriza por uma tendência decrescente das curvas, com inclinações maiores para as densidades mais altas.

FIGURA 18- EVOLUÇÃO DO NÚMERO DE ÁRVORES EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

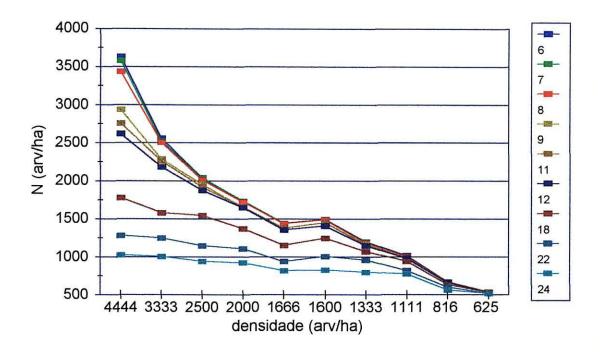
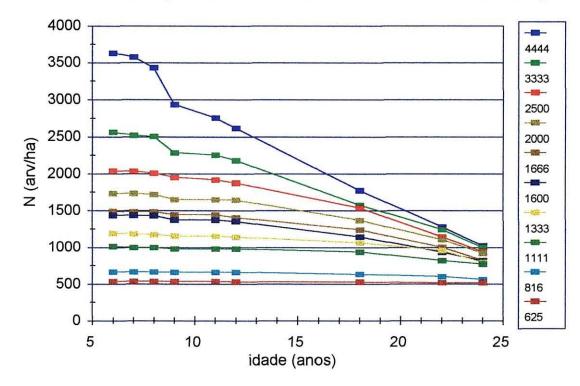



FIGURA 19- EVOLUÇÃO DO NÚMERO DE ÁRVORES EM FUNÇÃO DA IDADE

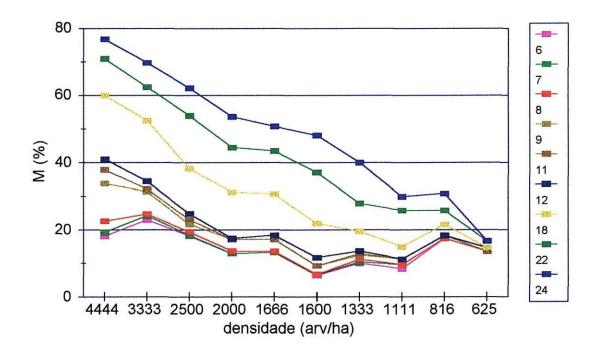
DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

resultados aplicação do Os da teste de correspondentes às diferentes idades, mostraram uma tendência à diminuição número de tratamentos diferencas no com significativas. Isto significa que se observa uma tendência para um número de árvores semelhante, independentemente da densidade inicial. À continuar a tendência observada até os 24 anos, pode-se esperar que os tratamentos com densidades iniciais superiores a 625 árvores por hectare, alcancem, decorrido certo tempo, um número de árvores similar, ao redor do correspondente ao referido tratamento. É de se prever, não obstante, que com o transcurso do tempo este limite inferior continui diminuindo, até um valor associado principalmente ao tamanho de copa, proprio da espécie (limite natural da espécie).

4.2.2.2 Mortalidade

No efeito da densidade de plantação sobre a mortalidade diferenciou-se em 2 períodos: de 6 a 8 anos e de 9 a 24 anos. Este comportamento resultou coincidente com o detectado por FERNÁNDEZ; CRECHI; FRIEDL (1991).

O primeiro período caracterizou-se pela ausência de diferenças estatísticamente significativas entre as diferentes densidades iniciais, ou seja, pela independência entre as duas variáveis. Neste período a mortalidade pareceu depender mais de causas que atuam em forma aleatória (ataque de pragas,


enfermidades, concorrência com as ervas daninhas, problemas climáticas, e outras) que propriamente da concorrência entre árvores de Araucária.

relação entre as variáveis mortalidade-densidade (Figura 20) se caracteriza por uma tendência curvilínea, com um mínimo de mortalidade nas densidades médias, em torno de 1600 árvores por hectare, e com tendências levemente crescentes a partir deste mínimo para as densidades extremas, porém mais fortemente para as altas. Dito comportamento pode interpretar-se como sendo o resultado da maior concorrência entre árvores da mesma espécie, nas densidades mais altas, e com ervas daninhas nas mais baixas. A existência de um mínimo de mortalidade, em torno de 1600 árvores por hectare, estaria indicando que nessa densidade, as árvores ficam suficientemente distanciadas de maneira que a concorrência entre afeta as mesmas não mortalidade. Por outro lado, encontram-se o suficientemente próximas de maneira que restringem o efeito da concorrência com as ervas daninhas sobre a mortalidade.

- O segundo período se caracterizou por:
- a) a manifestação de um efeito estatísticamente significativo da densidade sobre a mortalidade;
- b) um paulatino aumento no número de tratamentos cujas
 médias apresentaram-se significativamente diferentes;
- c) um reordenamento das médias, no sentido de maior densidade com uma maior mortalidade.

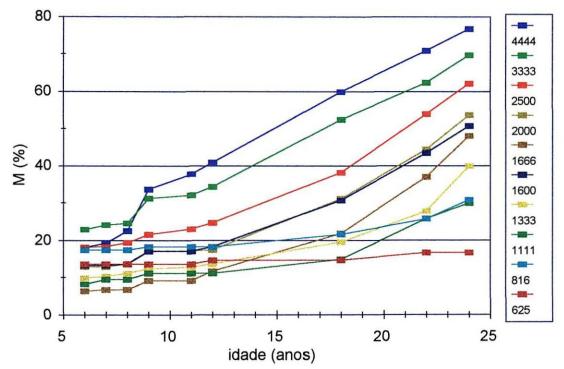

Em síntese, nesse período a concorrência foi o fator determinante da mortalidade, a qual, é crescente com a idade e significantemente maior nos plantios mais densos, evidenciandose assim, o efeito direto da densidade na mortalidade.

FIGURA 20- EVOLUÇÃO DA MORTALIDADE EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

A Figura 21 mostra o comportamento da mortalidade em função da idade, para diferentes densidades iniciais de plantação. Observa-se que, independentemente da densidade, registrou-se um aumento progressivo da mortalidade. O primeiro período (6 a 8 anos) caracterizou-se por um paralelismo entre as diferentes densidades.

FIGURA 21- EVOLUÇÃO DA MORTALIDADE EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

No segundo período (9 a 24 anos) observou-se o reordenamento dos tratamentos, através dos entrecruzamentos das curvas, com o incremento na mortalidade, particularmente nas densidades mais altas.

4.2.2.3 Área Basal

Observou-se um efeito estatísticamente significativo da densidade inicial sobre o crescimento da área basal, em todas as idades estudadas. Este comportamento resultou coincidente com o detectado para a mesma espécie por FAHLER; DI LUCCA (1980),

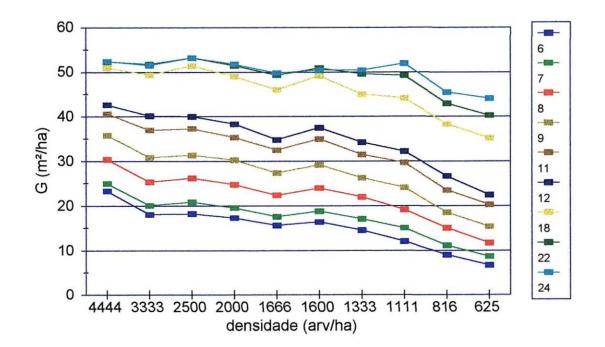
SPELTZ; MONTEIRO; CORDEIRO (1980), PUJATO; MARLATZ (1983) e FERNÁNDEZ; CRECHI; FRIEDL (1991).

No período de 6 até 12 anos, não foram observadas diferenças significativas entre as médias correspondentes às 6 maiores densidades (4444 a 1600 árvores por hectare). Durante esse período, os 2 tratamentos que apresentaram maiores áreas basais (4444 e 2500 árvores por hectare) superaram um número praticamente constante de tratamentos de menores densidades.

Aos 18 anos tínha-se 8 tratamentos cujas médias não apresentaram diferenças significativas (de 4444 a 1111 árvores por hectare), situação esta que se manteve aos 24 anos (Figuras 20 e 21). Isto pode interpretar-se como que, a esta idade, as massas remanescentes de ditas densidades de plantação já tenham alcançado ou estão muito próximas em atingir a área basal final constante capaz de ser suportada pelo sítio, conceito mencionado, para outras espécies por KIRA; OGAWA; SAKAZAKI²⁰ e KIRA; SHINOZAKI²¹, citados por PIENAAR; TURNBULL (1973). Assim sendo, а área basal final constante para а angustifolia (Bert.) O. Ktze. no sítio estudado encontrar-se-ia em torno de 53 m²/ha.

É de se esperar, então, que nos próximos anos os maiores crescimentos ocorram nas menores densidades iniciais, e assim,

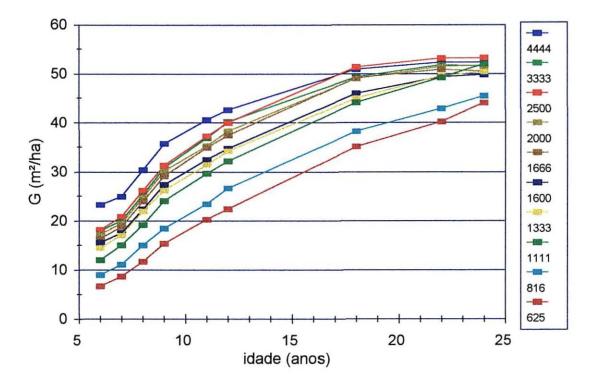
²⁰ KIRA, T.; OGAWA, H.; SAKAZAKI, N. Intraspecific competition among higher plants. I. Competition-yield-density interrelationships in regularly dispersed population. <u>Inst Polytech</u>. Osaka City Univ., v. 4, p. 1-16, 1953.


²¹ KIRA, T.; SHINOZAKI, K. Intraspecific competition among higher plants. VII. Logistic Theory of the C-D Effect. <u>Inst Polytech</u>. Osaka City Univ., v. 7, p. 35-72, 1956.

tenha-se uma situação final de igual área basal, independentemente da densidade.

Os resultados obtidos através da aplicação do teste de Tukey, indicam ainda que para o período comprendido entre 6 até 12 anos de idade, aproximadamente 1600 árvores por hectare representa a densidade inicial limite, a partir da qual, densidades menores sub-ocupam o sítio quanto ao crescimento em área basal. Enquanto que, aos 18, 22 e 24 anos essa densidade limite é de 816 árvores por hectare.

As Figuras 22 e 23, mostram a evolução da área basal em função da densidade de plantação e da idade.


FIGURA 22- EVOLUÇÃO DA ÁREA BASAL EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

Através da Figura 22 verifica-se que o efeito da densidade inicial manifesta-se através da inclinação das observando-se que à medida que aumenta a idade há uma tendência à horizontalidade, resultando assim, a expressão gráfica da tendência da área basal alcançar a um valor independentemente da densidade inicial.

Na Figura 23, o efeito da idade é observado através da inclinação positiva das curvas (relação direta), assim como a tendência à diminuição das diferenças entre as várias densidades iniciais.

FIGURA 23- EVOLUÇÃO DA ÁREA BASAL EM FUNÇÃO DA IDADE DE MEDIÇÃO PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

4.2.2.4 Volume por Hectare

O análise de variância mostrou diferenças significativas volumes produzidos nas diferentes densidades plantação. Ao analisar as diferenças entre os pares de médias através do teste de Tukey, observou-se que no período de 6 até os 18 anos as duas densidades mais baixas (625 e 816 árvores hectare), eram as únicas que mostravam valores significativamente inferiores em relação às outras densidades. Portanto, não se detetou diferenças significativas entre as densidades de 1111 a 4444 árvores por hectare, durante o período mencionado (6 a 18 anos). Isto mostra que na amplitude de 1111 a 4444 árvores por hectare, o volume é estatísticamente equivalente e independente da densidade inicial de plantação. Iqual resultado foi também obtido por CRECHI; FRIEDL; FERNÁNDEZ (1991), com dados do mesmo experimento.

Aos 24 anos, deixaram de existir diferenças significativas entre as médias de todos os tratamentos.

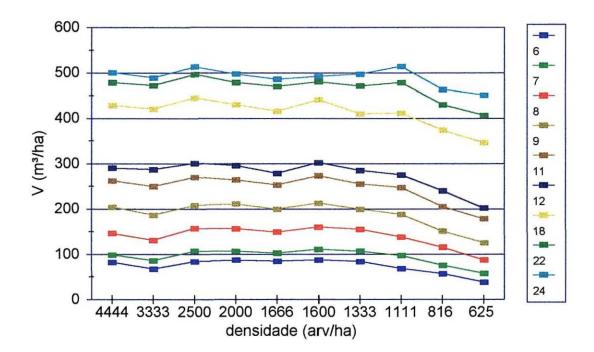
No Quadro 6 comparou-se o volume médio por árvore, calculado como quociente entre o volume total e o número de árvores por hectare, para as densidades de 4444 e 1111 árvores por hectare, cujos volumes por hectare não diferem significativamente nas idades de 6 até 18 anos. Na idade de 6 e 18 anos foi colocada na Tabela apenas para efeito comparativo, a densidade de 625 árvores por hectare. Já, na idade de 24 anos,

observou-se diferenças não significativas entre as densidades de 4444 e 625 árvores por hectare.

QUADRO 6- COMPARAÇÃO DOS VOLUMES MÉDIOS.

Idade (anos)	Tratamentos (arv/ha)	Volume total (m³/ha)	Número de árvores (arv/ha)	Volume médio (m³/arv)	Proporção entre vol. médios
				<u> </u>	
	4444	82,80	3636	0,02277	1,00
6	1111	69,00	1018	0,06778	2,98
	625	38,87	540	0,07198	3,16
	4444	429,10	1780	0,2411	1,00
18	1111	411,88	944	0,4363	1,81
	625	346,82	533	0,6507	2,70
	4444	501,29	1031	0,4862	1,00
24	1111	514,66	778	0,6615	1,36
	625	451,75	520	0,8687	1,79

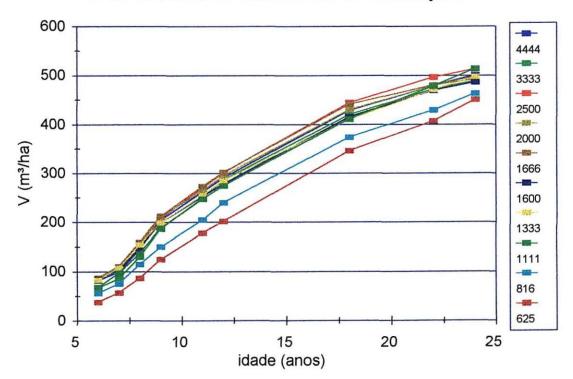
Na Figura 24, observa-se o volume em função da densidade de plantação para diferentes idades, indicando que a tendência do volume com a densidade é crescente entre 625 a 1333 árvores por hectare, de 6 até os 12 anos, enquanto que, de 1333 até 4444, o volume mantem-se praticamente constante. A partir dos 18 até 24 anos a tendência crescente é de 625 a 1111 árvores por hectare, enquanto que entre 1111 e 4444 árvores por hectare o volume é praticamente constante (aos 24 anos não se registrou diferenças significativas entre todas as densidades analisadas).


Em todas as idades, o volume máximo encontra-se nas densidades centrais (até os 18 anos entre 1600 e 2500 árvores por hectare, e de 18 até 24 anos entre 1111 e 2500 árvores por

hectare), diminuindo para as densidades altas e um pouco mais fortemente para as baixas.

Em todas as idades, os volumes estão muito próximos um dos outros, tendo-se praticamente uma linha horizontal entre as densidades de 1111 até 4444 árvores por hectare.

Na Figura 24, o efeito da idade manifesta-se por um deslocamento ascendente das curvas.


FIGURA 24- EVOLUÇÃO DO VOLUME EM FUNÇÃO DA DENSIDADE DE PLANTAÇÃO PARA DIFERENTES IDADES DE MEDIÇÃO.

Na Figura 25, é apresentada a evolução do volume em função dos anos de medição para as diferentes densidades. O efeito da densidade manifesta-se sobremaneira, nas curvas das 2 densidades mais baixas que estão claramente abaixo das demais até os 18 anos. Já a partir de 22 anos até 24 o intervalo de

amplitude dos valores médios é muito menor, e estatísticamente as diferenças são não significativas, o que indica produções iguais numa idade próxima.

FIGURA 25- EVOLUÇÃO DO VOLUME EM FUNÇÃO DA IDADE DE MEDIÇÃO
PARA DIFERENTES DENSIDADES DE PLANTAÇÃO.

4.3 MODELAGEM DAS VARIÁVEIS DO POVOAMENTO

4.3.1 DIÂMETRO MÉDIO ARITMÉTICO

Os resultados dos ajustes dos modelos de Chapman-Richards e Prodan são apresentados na Tabela 5.

O coeficiente b_0 (valor assintótico) do modelo de Chapman-Richards variou de 34,92 até 112,15 cm, com uma

tendência decrescente desde as maiores densidades em direção às menores.

TABELA 5- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN (DIÂMETRO MÉDIO ARITMÉTICO).

Modelo	coefi-		Densidades (arv/ha)									
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625	
Chapman-	b _o	100,0	75,48	112,1	67,16	49,12	53,28	43,38	37 , 85	35,50	34,92	
Richards	b ₁	0,007	0,010	0,004	0,010	0,020	0,018	0,027	0,049	0,091	0,121	
	b ₂	0,797	0,773	0,673	0,651	0,679	0,696	0,664	0,827	1,202	1,592	
Esta-	R ² aj	0,952	0,966	0,979	0,978	0,979	0,969	0,962	0,979	0,933	0,980	
tísticas	S _{yx} %	8,32	6,55	4,64	4,47	4,17	5,34	5,34	4,17	8,18	4,53	
	b ₀	-1 , 78	-1,12	-1,48	-0, 85	-0,53	-0 , 67	-0,19	0,288	0,721	1,339	
Prodan	b ₁	0,967	0,789	0,756	0,593	0,500	0,546	0,394	0,317	0,235	0,134	
	b ₂	0,005	0,010	0,010	0,016	0,018	0,016	0,021	0,022	0,021	0,023	
Esta-	R^2_{aj}	0,953	0,966	0,979	0,976	0,979	0,969	0,962	0,980	0,934	0,981	
tísticas	S _{yx} %	8,20	6,56	4,67	4,60	4,24	5,39	5,34	4,01	8,11	4,46	

A tendência para um valor assintótico comum a todas as densidades não se refletiu através do modelo, devido ao fato que nas menores densidades, o diâmetro (d) foi medido praticamente sobre o mesmo número de árvores vivas, enquanto que nas maiores densidades, devido à maior concorrência entre árvores, ocorreu uma alta taxa de mortalidade. Por conseguinte, com a idade o diâmetro altera-se mais depressa devido ao fato que ele é medido cada vez mais sobre um menor número de árvores vivas e o modelo interpreta isto como sendo uma velocidade de crescimento maior, nas maiores densidade e portanto, também a assíntota será maior. De acordo à tendência observada, quando o número de árvores for praticamente o mesmo para todas as densidades, ou seja, um número de árvores similar

às menores densidades, em torno de 500 árvores, todos eles terão praticamente o mesmo diâmetro, com valores próximos aos diâmetros das menores densidades.

Os valores do coeficiente b_1 (inclinação média da curva), mostram uma tendência crescente desde as maiores densidades em direção às menores (0,0047 até 0,121). Isto devido a que o DAP cresce mais depressa inicialmente nas menores densidades em relação às maiores, porque o DAP é muito afetado pela concorrência nas maiores densidades.

Os valores do coeficiente b_2 (responsável pela forma da curva e localização do ponto de inflexão) variam entre 0,65 e 0,82 (corresponde m=-0,54 até -0,22) para as densidades de 4444 até 1111 arv/ha (valores estes negativos devido a que o DAP comporta-se de modo diferente). Enquanto que para as duas menores densidades de plantação, o valor de "m" é positivo, de 0,17 para 816 arv/ha e de 0,37 para 625 arv/ha.

Nos ajustes com o modelo de Prodan, observou-se que o coeficiente b_2 (assíntota = $1/b_2$) variou de 42,98 até 195 cm, com uma tendência decrescente desde as maiores densidades em direção às menores. A tendência para um valor assintótico comum a todas as densidades não se refletiu através do modelo, devido aos mesmos fatores já explicados para o modelo de Chapman-Richards.

Analisando os valores assintóticos através das menores densidades, observa-se que o modelo de Chapman-Richards

descreve melhor os dados, já que para aproximadamente 520 árvores de densidade final e uma área basal final constante de aproximadamente $52,50 \text{ m}^2/\text{ha}$, o diâmetro dg resultante estaria próximo de 35,85 cm, logo, o DAP deve ser um pouco inferior a este valor (Chapman-Richards = 34,93 cm, Prodan = 42,98 cm).

As estatísticas resultantes e que constam na Tabela 5, bem como a apresentação gráfica nas Figuras 26 e 27 mostram que o ajuste obtido, no período de 6 até 24 anos, praticamente não indicam qualquer diferença entre os dois modelos. As análises gráficas dos resíduos também indicaram que ambos os modelos estimam sem tendenciosidade a evolução desta variável para o período analisado.

FIGURA 26- EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO (MODELO DE CHAPMAN-RICHARDS).

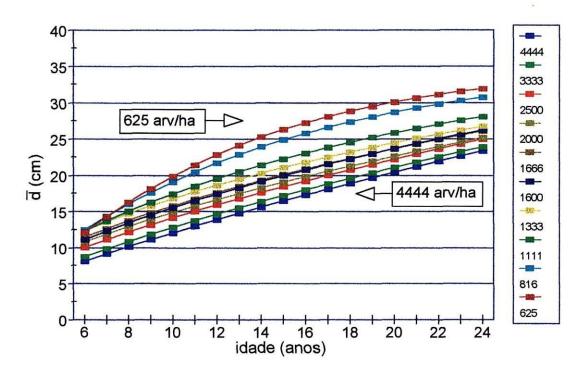
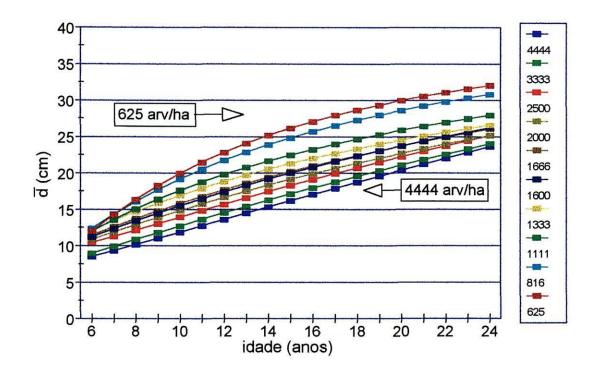
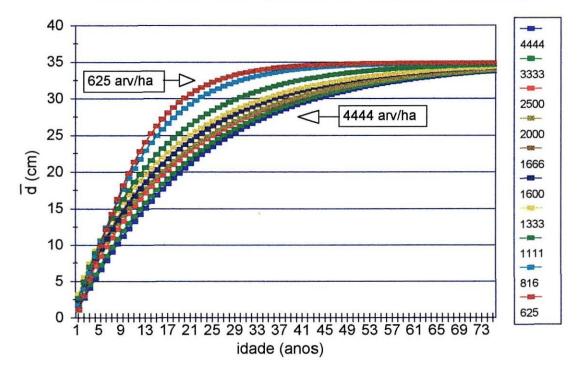



FIGURA 27- EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO (MODELO DE PRODAN).

4.3.1.1 Diâmetro Médio Aritmético com Valor Assintótico Fixo

Com base na constatação, de que o valor assintótico do diâmetro médio aritmético deve ficar próximo de 35,85 cm para uma densidade final de aproximadamente 500 árvores por hectare, o DAP médio foi novamente modelado para cada densidade de plantação, utilizando o modelo de Chapman-Richards, cuja assíntota estimada para a menor densidade foi de 34,928 cm.


O modelo :
$$d = 34,928 \cdot (1-\exp(-(b_1 \cdot I)))^{(1/(1-b2))}$$

Os coeficientes estimados e as estatísticas são apresentados na Tabela 6, assim como a apresentação gráfica está na Figura 28.

TABELA 6- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE PARA O MODELO DE CHAPMAN-RICHARDS COM O DIÂMETRO MÉDIO ARITMÉTICO (VALOR ASSINTÓTICO) FIXO.

densidade	Coefi	cientes	Estatísticas			
(arv/ha)	b_1	b ₂	R ² aj	s_{yx} %		
4444	0,04624014	0,04874760	0,94757	8,75		
3333	0,0466374	0,00018586	0,96395	6,84		
2500	0,04693914	-0,10525514	0,97237	4,40		
2000	0,04548988	-0,19838361	0,97536	4,75		
1600	0,04960716	-0,19893515	0,97861	4,29		
1666	0,05197087	-0,13202469	0,96800	5,49		
1333	0,05082383	-0,27194991	0,96357	5,28		
1111	0,06419204	-0,08593288	0,98053	4,06		
816	0,09680536	0,20401971	0,93603	8,02		
625	0,12102696	0,37223746	0,98140	4,44		

FIGURA 28- EVOLUÇÃO DO DIÂMETRO MÉDIO ARITMÉTICO COM VALOR ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS).

4.3.2 DIÂMETRO MÉDIO QUADRÁTICO

Os resultados de ajustes dos modelos de Chapman-Richards e Prodan estão na Tabela 7.

As considerações já feitas para diâmetro médio aritmético sobre o valor assintótico e tendências dos coeficientes são iguais para o diâmetro médio quadrático.

As estatísticas resultantes e que constam na Tabela 7, bem como a apresentação gráfica nas Figuras 29 e 30 mostram que o ajuste obtido, no período de 6 até 24 anos, praticamente não indicam qualquer diferença entre os dois modelos, testados. As análises gráficas dos resíduos também indicaram que ambos os modelos estimam sem tendenciosidade a evolução desta variável para o período analisado.

TABELA 7- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN (DIÂMETRO MÉDIO QUADRÁTICO).

Modelo	coefi-				Den	sidade	es (ar	v/ha)			
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
Chapman-	b ₀	119,3	76,94	110,6	69,18	57,19	60,65	45,96	35,39	36,44	35 , 70
Richards	b ₁	0,006	0,010	0,005	0,010	0,016	0,015	0,025	0,066	0,090	0,117
	b_2	0,792	0,770	0,675	0,646	0,659	0,682	0,657	0,924	1,178	1,547
Esta-	R^2_{aj}	0,969	0,974	0,982	0,982	0,981	0,974	0,971	0,983	0,917	0,980
tísticas	S _{yx} %	6,64	5,67	4,34	3,92	4,01	4,94	4 , 67	3,67	9,00	4,49
•	b_0	-1 , 73	-1,02	-1,32	-0 , 82	-0,59	-0,70	-0 , 23	0,291	0,648	1,250
Prodan	b ₁						0,536			-	i
	b ₂	0,004	0,010	0,011	0,016	0,017	0,015	0,020	0,021	0,020	0,022
Esta-	R ² aj	0,970	0,974	0,981	0,981	0,980	0,973	0,971	0,984	0,918	0,981
tísticas	S _{yx} %	6,48	5,69	4,38	4,05	4,11	5,00	4,69	3,54	8,96	4,43

FIGURA 29- EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO (MODELO DE CHAPMAN-RICHARDS).

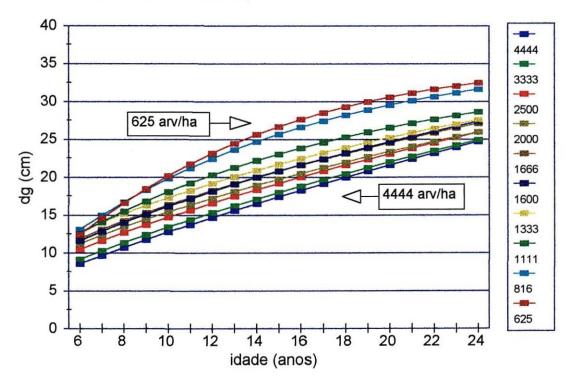
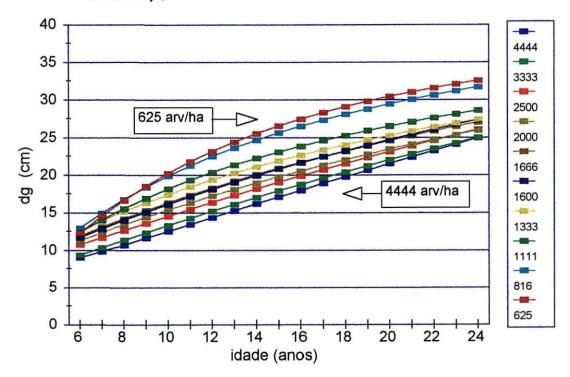



FIGURA 30- EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO (MODELO DE PRODAN).

4.3.2.1 Diâmetro Médio Quadrático com Valor Assintótico Fixo

Com base na constatação, de que o valor assintótico deve ficar próximo de 35,85 cm para uma densidade final de aproximadamente 500 árvores por hectare, o diâmetro médio quadrático foi novamente modelado para cada densidade de plantação, utilizando o modelo de Chapman-Richards, cuja assíntota estimada para a menor densidade foi de 35,705 cm.

O modelo :
$$d = 35,705 \cdot (1-\exp(-(b_1 \cdot I)))^{(1/(1-b2))}$$

A ilustração gráfica está na Figura 31. Os coeficientes estimados e as estatísticas são apresentados na Tabela 8.

FIGURA 31- EVOLUÇÃO DO DIÂMETRO MÉDIO QUADRÁTICO COM VALOR ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS).

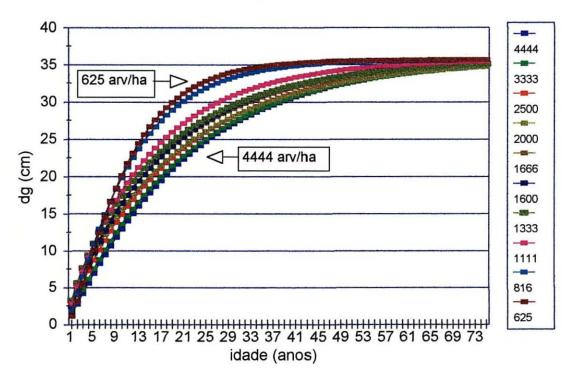


TABELA 8- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE PARA O MODELO DE CHAPMAN-RICHARDS COM O DIÂMETRO MÉDIO QUADRÁTICO (VALOR ASSINTÓTICO) FIXO.

densidade	Coefic	ientes	Estatís	Estatísticas			
(arv/ha)	b ₁	b_2	R ² aj	s_{yx}			
4444	0,04987816	0,07567053	0,96254	7,35			
3333	0,04884186	0,01319480	0,97151	6,04			
2500	0,04907974	-0,08786109	0,97996	4,25			
2000	0,04644091	-0,19765379	0,97996	4,25			
1600	0,05186204	-0,17591190	0,97916	4,25			
1666	0,05493455	-0,10704492	0,97117	5,20			
1333	0,05231360	-0,25588689	0,97166	4,64			
1111	0,06429713	-0,09686776	0,98428	3,60			
816	0,09820187	0,19702467	0,92073	8,83			
625	0,11780248	0,35454598	0,98158	4,40			

4.3.3 ALTURA MÉDIA

Os coeficientes obtidos para os dois modelos, bem como as estatísticas de ajuste para cada densidade de plantação, estão na Tabela 9.

TABELA 9- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN (ALTURA MÉDIA).

Modelo	coefi-				Den	sidade	s (ar	r/ha)		,	
	ciente										625
Chapman-	b _o	22,96	20,90	22,69	21,96	22,29	21,11	21,14	21,49	20,95	21,49
Richards	b ₁						0,092				
	b_2	1,188	1,220	1,052	1,164	1,113	1,208	1,355	1,403	1,497	1,654
Esta-	R^2_{aj}	0,993	0,992	0,995	0,993	0,993	0,992	0,993	0,997	0,990	0,997
tísticas	1 1	1. '		j -		1 -	2,67	L	·		1,77
	b_0						1,218				
Prodan	b ₁						0,386				l
							0,036				l
Esta-	R^2_{aj}	0,993	0,993	0,996			0,993		0,997	0,991	0,997
tísticas	S _{yx} %	2,74	2,58	1,95	2,31	2,44	2,54	2,21	1,50	3,00	1,72

O coeficiente b_0 (valor assintótico) do modelo de Chapman-Richards variou indistintamente entre 20,90 m até 22,96 m, sem uma tendência definida. Os valores do coeficiente b_1 (inclinação média da curva), mostraram uma tendência crescente das maiores densidades em direção às menores (0,07 até 0,118). Os valores do coeficiente b_2 (responsável pela forma da curva e localização do ponto de inflexão) também mostraram uma tendência crescente desde as maiores densidades para as menores, variando de 1,05 até 1,65.

O coeficiente b_2 (assíntota = $1/b_2$) do modelo de Prodan variou de 32,0 m até 26,7 m, com uma tendência decrescente desde as maiores densidades em direção às menores. Os valores do coeficiente b_0 , mostram um valor mínimo na densidade de 2500 arv/ha (0,73), com tendência levemente crescente para as maiores densidades (1,30), e mais forte para as menores densidades (2,48), variando de 0,73 até 2,48. Os valores do coeficiente b_1 , mostram tendência decrescente desde as maiores densidades para as menores, variando de 0,50 até 0,2248.

As estatísticas da Tabela 9 e a apresentação das curvas nas Figuras 32 e 33, indicam o bom ajuste no período de 6 até 24 anos, não mostrando praticamente diferenças entre os modelos.

As análises gráficas dos resíduos também indicaram que ambos os modelos estimam sem tendenciosidade a evolução desta variável para o período analisado.

FIGURA 32- EVOLUÇÃO DA ALTURA MÉDIA (MODELO DE CHAPMAN-RICHARDS).

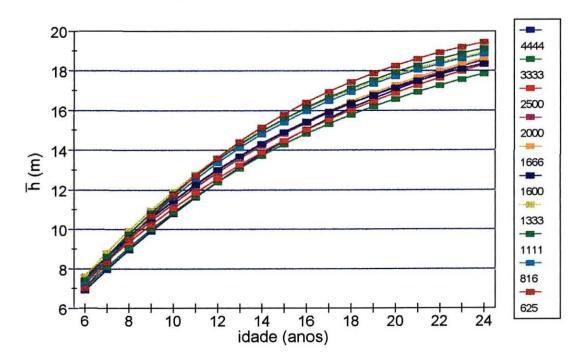
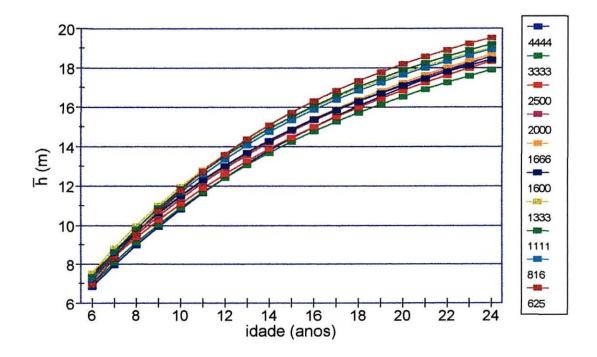



FIGURA 33- EVOLUÇÃO DA ALTURA MÉDIA (MODELO DE PRODAN).

Analisando os valores assintóticos para toda a amplitude de densidades, observa-se que o modelo de Chapman-Richards descreve melhor os dados, já que a tendência a um valor assintótico comum é mais aparente nesse modelo.

4.3.4 ALTURA DOMINANTE

Os coeficientes obtidos para os dois modelos, bem como as estatísticas de ajuste para cada densidade de plantação, são apresentados na Tabela 10.

TABELA 10- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN (ALTURA DOMINANTE).

Modelo	coefi-	,			Den	sidade	s (arv	/ha)			
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
Chapman-							22,79				
Richards	b ₁						0,105		L	ł	
	b ₂	1,408	1,247	1,290	1,293	1,249	1,263	1,409	1,440	1,415	1,293
Esta-	R^2_{aj}	0,999	0,999	0,998	0,998	0,999	0,998	0,999	0,999	0,987	0,998
tísticas	S _{yx} %						1,01			3,43	
	bo		17		1	1	1,178				
Prodan	b ₁	0,243	0,304	0,290	0,281	0,316	0,289	0,243	0,245	0,243	0,356
	b ₂						0,034	1			
Esta-	R ² aj	0,999	0,999	0,999	0,998	0,999	0,999	0,999	0,999	0,987	0,998
tísticas	S _{yx} %	0,66	0,61	0,81	1,03	0,68	0,93	0,57	0,67	3,40	1,35

O coeficiente b_0 (valor assintótico) do modelo de Chapman-Richards variou de 22,79 até 23,83 m, com uma pequena tendência crescente desde as maiores densidades em direção às menores. Os valores do coeficiente b_1 (inclinação média da

curva), não mostraram uma tendência, variando entre 0,097 até 0,1141. Os valores do coeficiente b_2 (responsável pela forma da curva e localização do ponto de inflexão) também sem tendência, variando entre 1,248 e 1,441.

As estatísticas da Tabela 10 e a ilustração das curvas nas Figuras 34 e 35, indicam o bom ajuste no período de 6 até 24 anos, não mostrando praticamente diferenças de um modelo em relação ao outro. Através das análises gráficas dos resíduos, também foi possível observar que ambos os modelos estimaram sem tendenciosidade a evolução desta variável para o período analisado.

FIGURA 34- EVOLUÇÃO DA ALTURA DOMINANTE MÉDIA (MODELO DE CHAPMAN-RICHARDS).

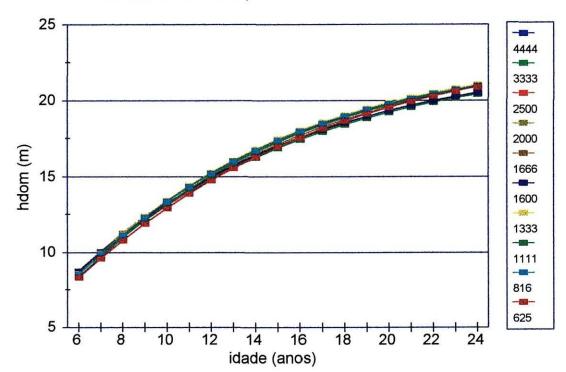
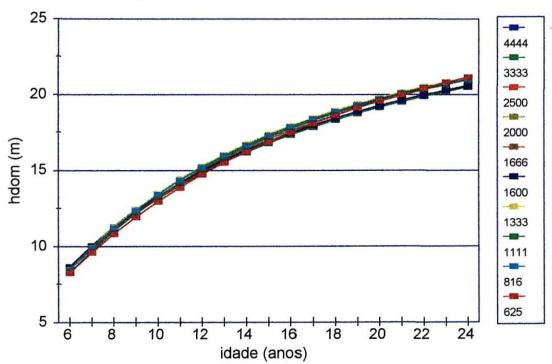



FIGURA 35~ EVOLUÇÃO DA ALTURA DOMINANTE MÉDIA (MODELO DE PRODAN).

Os valores assintóticos estimados, principalmente observando-se o valor numérico e a tendência para um valor assintótico comum, indicam uma leve superioridade para o modelo de Chapman-Richards.

4.3.5 ÁREA BASAL

Os coeficientes obtidos para os dois modelos, bem como as estatísticas de ajuste para cada densidade de plantação, são apresentados na Tabela 11.

COEFICIENTES						
MODELOS DE CI	HAPMAN-RICHA	ARDS E	PRODAN	(ÁREA	BASAI	۵).

Modelo	coefi-				Den:	sidade	s (arv	r/ha)	· · · · ·		
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
Chapman-	b ₀	53 , 73	53,23	55,49	53,94	52,87	52,74	53,71	55,08	50,68	52,29
Richards	b ₁	0,210	0,211	0,195	0,188	0,199	0,167	0,155	0,147	0,134	0,115
	b_2			0,681	1 '	1 '	1 -				1 '
Esta-	R^2_{aj}	0,982	0,908	0,944	0,961	0,979	0,960	0,979	0,968	0,981	0,951
tísticas	S _{yx} %	3,74	11,63	8,61	7 , 27	5,39	7,80	5 , 87	8,02	7,02	13,25
	bo	1,340	2,245	2,034	2,087	2,453	2,169	2,159	2,732	3,901	5,094
Prodan	b ₁	-0,06	-0,14	-0,10	-0,09	-0,14	-0,07	-0,04	-0,07	-0,11	-0,12
	b ₂	0,019	0,021	0,019	0,019	0,021	0,019	0,018	0,018	0,020	0,019
Esta-	R^2_{aj}	0,981	0,901	0,944	0,961	0,979	0,960	0,979	0,969	0,981	0,951
tísticas	S _{yx} %	3,78	11,61	8,61	7,27	5,37	7,80	5,86	8,01	7,03	13,29

Observa-se que o coeficiente bo do modelo de Chapman-Richards variou indistintamente entre 50,69 até 55,49 m²/ha, sem uma tendência definida. Os valores do coeficiente b₁, decrescente tendência desde mostraram uma as densidades em direção às menores (0,21 até 0,11). Isto devido a que o G (m²/ha) cresce mais depressa inicialmente nas densidades emrelação às menores, ou diretamente proporcional à densidade de plantação. Os valores do coeficiente b₂ variou entre 0,62 até 0,71, para toda a amplitude de densidades, sem uma tendência definida. Valores bastante similares para toda a amplitude de densidades, está indicando que a forma das curvas não difere muito uma de outra.

Por outro lado, nos ajustes com o modelo de Prodan, observou-se que o coeficiente b_2 variou de 46,75 até 55,43 m^2/ha , sem tendência definida. Os valores do coeficiente b_0 ,

mostraram uma tendência crescente desde as maiores densidades em direção às menores, variando de 1,34 até 5,09. Os valores do coeficiente b_1 , variaram de -0,147 até -0,048.

Ambos os modelos apresentaram valores assintóticos coerentes e semelhantes, para toda a amplitude de densidades. O modelo de Chapman-Richards apresentou valores de 50,69 até 55,49 m²/ha e o modelo de Prodan de 46,75 até 55,43 m²/ha. Por outro lado, as tendências dos coeficientes são parecidos em ambos os modelos.

As estatísticas resultantes e que constam na Tabela 11, bem como a apresentação gráfica nas Figuras 36 e 37 mostram que o ajuste obtido, no período de 6 até 24 anos, praticamente não mostram qualquer diferença entre os dois modelos. As análises gráficas dos resíduos também indicaram que ambos os modelos estimam sem tendenciosidade a evolução desta variável para o período analisado.

Quanto aos valores assintóticos prognosticados para idades superiores a 24 anos, observa-se que o modelo de Prodan acusa valores máximos superiores aos valores assintóticos para logo descer para o valor assintótico estimado. No modelo de Chapman-Richards não se observa esta tendência.

Além de serem totalmente compatíveis, a vantagem dos modelos biológicos, em relação aos empíricos, é que o modelo biológico interpreta a biologia do crescimento de organismos vivos de maneira real (crescimento acumulado têm forma sigmoidal) como acontece na natureza, enquanto um modelo

FIGURA 36- EVOLUÇÃO DA ÁREA BASAL (MODELO DE CHAPMAN-RICHARDS).

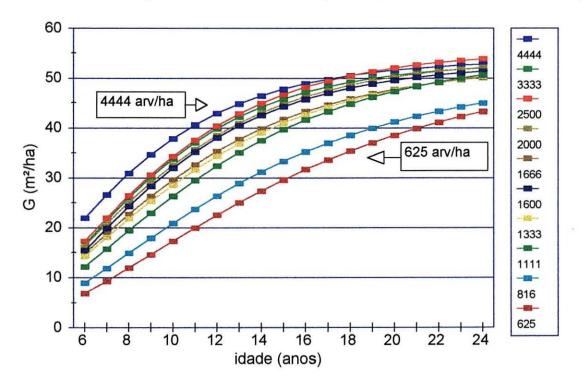
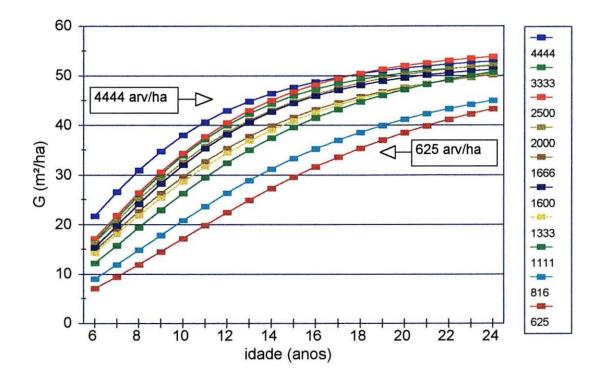



FIGURA 37- EVOLUÇÃO DA ÁREA BASAL (MODELO DE PRODAN).

empírico não necessáriamente (pode apresentar valores prognosticados inexplicáveis).

Também é possível observar, um valor assintótico final semelhante para toda a amplitude de densidades analisadas, indicando que a modelagem está de acordo à análise variância realizada, que detetou não existir significativas entre as densidades de 1111 até 4444 árvores por hectare, na idade de 24 anos. Se continuar essa tendência é possível esperar que nos próximos anos não exista diferença significativa entre todas densidades de as plantação estudadas.

Segundo MACHADO (1978), para *Pinus taeda* L., na região central do Estado do Paraná, um número inferior a 1000 árvores por hectare provavelmente não acuse a mesma área basal final constante, sem uma prática de rotação longa. Esta última constatação, é observada nesta experiência com *Araucária*, principalmente com as duas menores densidades de plantação, 625 e 816 arv/ha.

4.3.5.1 Evolução da Área Basal com Valor Assintótico Fixo

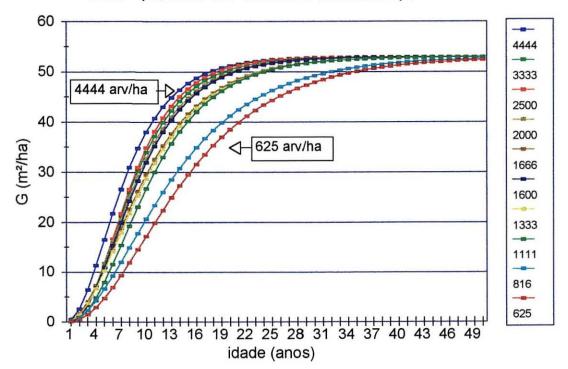
Através dos valores médios das parcelas foi possível observar que a máxima área basal suportavel pelo sítio é aproximadamente 53 m²/ha, e que até a idade de 24 anos existe uma amplitude de densidades, de 4444 até 1111 arv/ha, cujas

áreas basais não se diferenciam estatísticamente, para um nível de 95% de probabilidade, variando aleatóriamente dentro desta amplitude de densidades entre 49,84 até 53,26 m^2/ha . Por outro lado, as duas menores densidades de plantação não alcançaram ainda aos 24 anos o máximo de área basal que é capaz de suportar o sítio, resultado este, semelhante ao obtido por MACHADO (1978). As diferenças significativas detectadas nível de 95% de probabilidade nestas duas densidades em relação às demais, indicam que estão subocupando o sítio em termos de área basal. Com base nesta observação, e de acordo com PIENAAR; TURNBULL (1973), MACHADO (1978), entre outros, adotou-se o critério de fixar esta área basal de 53,26 m²/ha, como a área basal máxima que o sítio é capaz de suportar e na qual todas as densidades analisadas atingirão dito valor, porém em diferentes idades, sendo isto foi definido anteriormente, como inversamente proporcional a densidade de plantação.

Desta maneira foi ajustado novamente o modelo de Chapman-Richards para cada densidade de plantação, com o valor assintótico fixo de 53,26 m^2/ha .

O modelo:
$$G = 53,26705 \cdot (1-\exp(-(b_1 \cdot I)))^{(1/(1-b2))}$$

Os coeficientes estimados e as estatísticas estão na Tabela 12, assim como a apresentação gráfica está na Figura 38.


Ao comparar as estatísticas entre os ajustes do modelo com e sem assíntota fixa para cada densidade de plantação,

pode-se observar que não existem praticamente diferenças entre um ajuste e outro, mais sim uma pequena diferença a favor do modelo com assíntota fixa, em termos de S_{yx} %.

TABELA 12- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE PARA O MODELO DE CHAPMAN-RICHARDS COM ÁREA BASAL MÉDIA (VALOR ASSINTÓTICO) FIXO.

densidade	Coefic	ientes	Estatí	sticas
(arv/ha)	b_1	b_2	R ² aj	s_{yx} %
4444	0,22379871	0,65956819	0,98236	3,74
3333	0,21542275	0,72292957	0,904964	11,39
2500	0,23094386	0,75065481	0,942266	8,79
2000	0,20105958	0,70024530	0,962606	7,17
1600	0,19729146	0,70363747	0,980446	5,28
1666	0,16426008	0,63115454	0,962406	7,64
1333	0,16325056	0,64417233	0,979353	5,87
1111	0,16973783	0,70460637	0,967299	8,43
816	0,11919077	0,61471518	0,981971	6,96
625	0,11209194	0,64817190	0,953254	12,99

FIGURA 38- EVOLUÇÃO DA ÁREA BASAL COM VALOR ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS).

Isto significa que 53 m²/ha, reflete o valor assintótico que é capaz de suportar o sítio, para esta amplitude de densidades, dado ao ajuste obtido. Isto também foi observado por MACHADO (1978), com *Pinus taeda* L., exceto para a densidade de 1600 arv/ha no sítio II.

4.3.5.2 Modelo de Projeção para a Área Basal

Os coeficientes estimados para os dois modelos, bem como as estatísticas de ajuste para cada densidade de plantação, são apresentados na Tabela 13.

TABELA 13- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DO MODELO DE CHAPMAN-RICHARDS MODIFICADO POR MURPHY.

Modelo	coefi-	_			Den	sidade	s (arv	/ha)			
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
s/assin-	G _{max}	53,80	53,30	55,47	53,61	52,54	52,74	53,30	55,21	50,91	52,47
tota	b ₁		-0,16	1		· ·		·	1 -		
fixa	b_2	-0,29	-0,22	-0, 25	-0,20	-0,23	-0,17	-0,13	-0,10	-0,10	-0,15
Esta-	R^2_{aj}	0,966	0,983	0,988	0,983	0,983	0,988	0,983	0,994	0,994	0,991
tísticas	S _{yx} %	4,47	4,12	3,32	4,06	4,18	3,75	4,50	3,10	3,45	4,93
c/assin-	G _{max}										53,26
tota	b ₁	-1,00	- 0,25	-1,04	-0,25	-0,15	0,142	0,243	0,125	0,567	0,397
fixa	b ₂	·	- 0,23		L		· · · · · ·	l			
Esta-	R^2_{aj}	0,967	0,984	0,988	0,984	0,984	0,988	0,984	0,992	0,994	0,990
tísticas	S _{yx} %	4,36	4,03	3,42	3 , 98	4,10	3 , 67	4,45	3,51	3,37	5,12

As figuras correspondentes à evolução das curvas de área basal para o modelo de Murphy com e sem assíntota fixa, são equivalentes aos apresentados nas Figuras 36 e 38. Isto acontece, já que ambos são obtidos a partir da expressão:

$$dW/dI = n \cdot W^{m} - v \cdot W$$

Ao comparar as estatísticas entre os ajustes do modelo com e sem assíntota fixa para cada densidade de plantação, observa-se que não existem praticamente diferenças entre um ajuste e outro, à exceção de uma pequena diferença a favor do modelo com assíntota fixa, em termos de S_{vx} %.

4.3.6 VOLUME TOTAL

Os coeficientes obtidos para os dois modelos, bem como as estatísticas de ajuste para cada densidade de plantação, são apresentados na Tabela 14.

O coeficiente b_0 (valor assintótico) do modelo de Chapman-Richards variou de 514,70 até 570,56 m^3 /ha, para toda a amplitude de densidades, sem uma tendência definida.

TABELA 14- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS E PRODAN (VOLUME TOTAL).

Modelo	coefi-				Dens	sidade	s (arv	/ha)			
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
Chapman-	b ₀	533,4	514,7	550,1	531,8	520,1	532,3	544,4	570,5	521,52	533,2
Richards	b ₁	0,169	0,187	0,169	0,167	0,184	0,153	0,145	0,141	0,1415	0,128
	b ₂	0,765	0,811	0,762	0,749	0,778	0,726	0,705	0,648	0,7439	0,751
Esta-	R ² aj	0,988	0,968	0,983	0,985	0,987	0,980	0,985	0,974	0,9762	0,960
tísticas	S _{yx} %	6,07	10,63	7,18	6,54	5,84	7 , 78	6,51	9,56	9,79	14,18
	b ₀	0,517	0,658	0,499	0,470	0,506	0,472	0,422	0,485	0,6712	0,878
Prodan	b ₁	-0,03	-0,04	-0,03	-0, 02	-0,03	-0,02	-0,01	-0,02	-0,03	-0,04
	b ₂	1 .		1 -	1 -					0,0024	1 '
Esta-	R ² aj	0,987	0,966	0,982	0,984	0,987	0,979	0,985	0,973	0,9750	0,959
tísticas	S _{yx} %	6 , 36	10,99	7,38	6,72	6,00	7,89	6 , 67	9,79	10,02	14,49

Os valores do coeficiente b_1 (inclinação média da curva), mostraram uma tendência decrescente desde as maiores densidades em direção às menores (0,187 até 0,128). Isto devido a que o volume cresce mais depressa inicialmente nas maiores densidades em relação às menores, como consequência de maior número de árvores nas maiores densidades.

O coeficiente b_2 (responsável pela forma da curva e a localização do ponto de inflexão) variou de 0,64 até 0,81; para toda a amplitude de densidades.

As estatísticas resultantes e que constam na Tabela 14, bem como a apresentação gráfica nas Figuras 39 e 40 mostram que o ajuste obtido, no período de 6 até 24 anos, praticamente não indicam qualquer diferença entre os dois modelos.

As análises gráficas dos resíduos também indicaram que ambos os modelos estimam sem tendenciosidade a evolução desta variável para o período estudado.

Analisando os valores assintóticos (Figuras 41 e 42), observa-se que o modelo de Chapman-Richards descreveu melhor os dados. No modelo de Prodan observa-se o mesmo problema como o da área basal, os máximos valores estimados superam aos valores assintóticos, ou seja, ele estima sem tendências até a idade de 24 anos, a partir da qual, começa a descer até o valor assintótico estimado.

FIGURA 39- EVOLUÇÃO DO VOLUME TOTAL (MODELO DE CHAPMAN-RICHARDS).

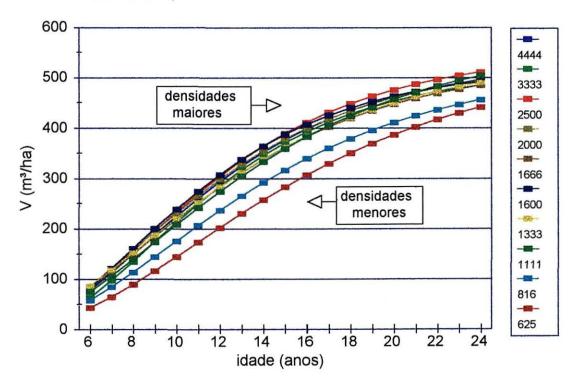


FIGURA 40- EVOLUÇÃO DO VOLUME TOTAL (MODELO DE PRODAN).

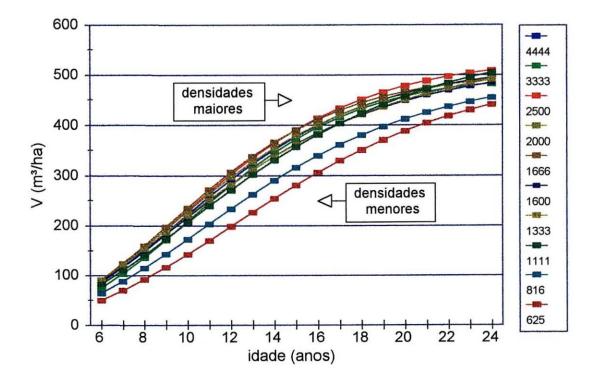


FIGURA 41- EVOLUÇÃO E TENDÊNCIA DO VOLUME TOTAL (MODELO DE CHAPMAN-RICHARDS).

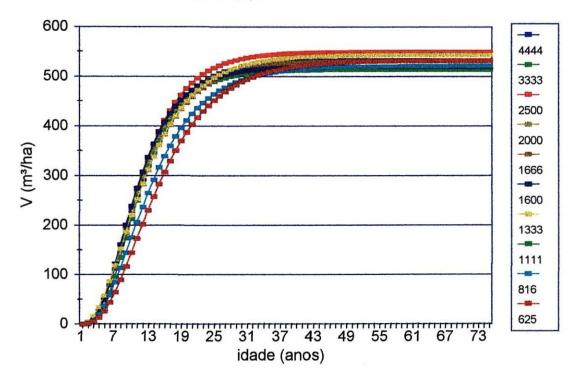
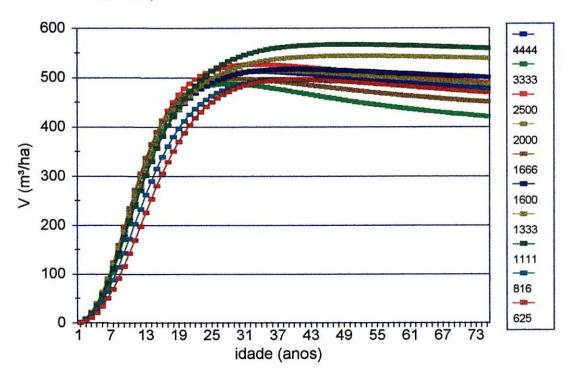



FIGURA 42- EVOLUÇÃO E TENDÊNCIA DO VOLUME TOTAL (MODELO DE PRODAN).

4.3.6.1 Evolução do Volume Total com Valor Assintótico Fixo

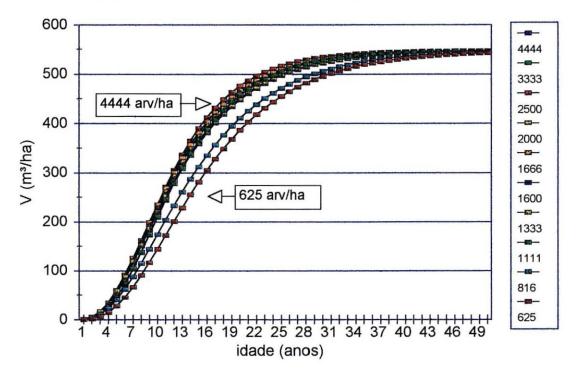
Através dos valores médios assintóticos do ajuste correspondente a cada densidade de plantação, observou-se que o máximo volume total que o sítio é capaz de suportar está em aproximadamente 548 m³/ha, e que até a idade de 24 anos existe uma amplitude de densidades de 4444 até 625 arv/ha, cujos volumes não se diferenciam estatísticamente entre si a um nível de 95% de probabilidade. Em todos esses casos, o volume máximo que o sítio pode suportar, variou aleatóriamente entre 514 até 570 m³/ha.

Com base nestas observações e adotando-se um critério similar empregado por PIENAAR; TURNBULL (1973), MACHADO (1978), resolveu-se fixar 548 m 3 /ha, como o volume máximo que o sítio é capaz de suportar.

Desta maneira foi ajustado novamente o modelo de Chapman-Richards para cada densidade de plantação, com o valor assintótico fixo de $548~{\rm m}^3/{\rm ha}$.

O modelo :
$$V = 548 \cdot (1-\exp(-(b_1 \cdot I)))^{(1/(1-b2))}$$

Os coeficientes estimados e as estatísticas estão na Tabela 15, assim como a apresentação gráfica está na Figura 43.


Ao comparar as estatísticas entre os ajustes do modelo com e sem assíntota fixa para cada densidade de plantação, pode-se observar que não existem praticamente diferenças entre

um ajuste e outro, contudo constata-se uma pequena diferença a favor do modelo com assíntota fixa, em termos de S_{yx} %.

TABELA 15- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE PARA O MODELO DE CHAPMAN-RICHARDS COM VOLUME MÉDIO (VALOR ASSINTÓTICO) FIXO.

densidade	Coefic	Coeficientes						
(arv/ha)	b_1	b_2	R ² aj	s_{yx} %				
4444	0,15703110	0,73962042	0,988317	6,03				
3333	0,15640482	0,75602278	0,967829	10,72				
2500	0,17148916	0,76615358	0,983893	7,04				
2000	0,15294194	0,71920749	0,985451	6,50				
1600	0,15657811	0,72322940	0,986697	6,11				
1666	0,14171278	0,69892471	0,980484	7,68				
1333	0,14318310	0,69952742	0,979353	6,38				
1111	0,15647191	0,75452231	0,974795	9,46				
816	0,12577039	0,70808882	0,976719	9,68				
625	0,12143571	0,73581880	0,962378	13,91				

FIGURA 43- EVOLUÇÃO DO VOLUME TOTAL COM VALOR ASSINTÓTICO FIXO (MODELO DE CHAPMAN-RICHARDS).

4.3.7 SOBREVIVÊNCIA

4.3.7.1 Sobrevivência (Árvores por Hectare)

Os coeficientes estimados e as estatísticas de ajustes dos modelos de Chapman-Richards modificado e Silva para cada densidade de plantação, estão na Tabela 16, assim como a apresentação gráfica nas Figuras 44 e 45.

TABELA 16- COEFICIENTES ESTIMADOS E ESTATÍSTICAS DE AJUSTE DOS MODELOS DE CHAPMAN-RICHARDS MODIFICADO E SILVA.

Modelo	coefi-				Den	sidade	s (arv	/ha)			
	ciente	4444	3333	2500	2000	1600	1666	1333	1111	816	625
Chapman-	b_1	0,07	0,07	0,05	0,04	0,019	0,031	0,005	0,004	0,003	0,0003
Richards	b_2	1,08	1,46	1,32	1,40	1,144	1,354	0,956	0,981	1,141	0,9093
Esta-	R ² aj	0,96	0,96	0,95	0,92	0,910	0,942	0,834	0,858	0,939	0,9814
tísticas	S _{yx} %	7,51	6,46	6,83	6,50	6,63	5,39	6,99	4,15	2,99	1,22
Silva	-b ₁	0,60	0,18	0,02	0,02	0,005	0,028	0,002	0,005	0,001	0,001
	b_2	1,05	1,08	1,16	1,15	1,219	1,138	1,362	1,187	1,229	1,1603
Esta-	R ² aj	0,97	0,97	0,99	0,97	0,991	0,988	0,950	0,960	0,972	0,9843
tísticas	S _{yx} %	7,05	5,33	1,83	3,65	2,05	2,43	3,81	2,20	2,00	1,12

Através das estatísticas R^2_{aj} e S_{yx} % é possível observar que os ajustes obtidos, no período de 6 até 24 anos, mostraram diferenças a favor do modelo de Silva, sendo este resultado coincidente com aqueles obtidos por SANQUETȚA (1990). Por outro lado, o modelo de Chapman-Richards modificado resultou também satisfatório.

As análises gráficas dos resíduos também mostraram que ambos os modelos descrevem sem tendenciosidades a evolução desta variável no período analisado.

FIGURA 44- EVOLUÇÃO DA SOBREVIVÊNCIA (MODELO DE CHAPMAN-RICHARDS MODIFICADO).

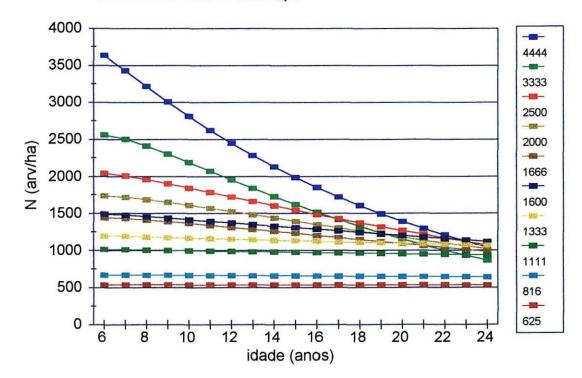
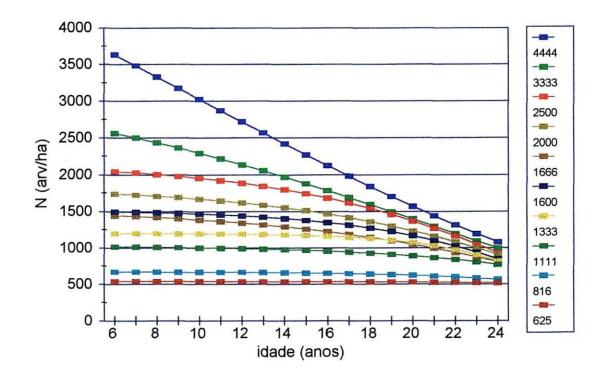



FIGURA 45- EVOLUÇÃO DA SOBREVIVÊNCIA (MODELO DE SILVA).

4.4 PROGNOSE DO CRESCIMENTO E DA PRODUÇÃO COM O MODELO DE CHAPMAN-RICHARDS

De acordo com os resultados apresentados no item 4.3, tanto o modelo de Chapman-Richards como de Prodan descreveram adequadamente a evolução das diferentes variáveis dentro do intervalo de idades analisadas. No entanto, o primeiro modelo estimou melhor os valores assintóticos para cada variável, e desta forma a prognose de crescimento e produção foi realizada com o modelo de Chapman-Richards, para as diferentes variáveis em função da idade e para cada densidade de plantação.

No Anexo 2, apresentam-se as Tabelas 17 até 26, contendo a evolução do crescimento acumulado das diferentes variáveis para cada densidade de plantação. As evoluções do IMA e do ICA para (G) e (V), para cada densidade de plantação podem ser observados nas Tabelas 27 e 28 (Anexo 2), assim como nas Figuras 46 a 49.

No Quadro 7, assim como em todas estas figuras (46 a 49) verifica-se que a culminação do máximo ICA e do máximo IMA, decresce progressivamente com a densidade inicial de plantação. Para o caso de (G) o decréscimo do ICA = 5,132 m²/ha/ano e IMA = 3,866 m²/ha/ano para a densidade de 4444 arv/ha até ICA = 2,697 m²/ha/ano e IMA = 1,980 m²/ha/ano para a densidade de 625 arv/ha (Tabela 27, Anexo 2). Estes resultados são compatívêis com aqueles obtidos por PIENAAR; TURNBULL (1973), MACHADO (1978).

A idade na qual ocorre o máximo de crescimento em IMA e ICA, é tanto maior quanto menor a densidade de plantação. Para o caso de (G) o ICA culmina aos 5 anos e IMA aos 8 anos para a densidade de 4444 arv/ha e até 10 anos para o ICA e 16 anos para o IMA, para a densidade de 625 arv/ha (Tabela 27, Anexo 2), conforme também constatado por PIENAAR; TURNBULL (1973), MACHADO (1978).

Depois da culminação do ICA, este decresce tão mais rápidamente quanto maior for a densidade de plantação, resultado este, também semelhante ao obtido por PIENAAR; TURNBULL (1973).

Nas idades jovens (até 12 anos) quanto maior a área basal total, maior o ICA. Já nas idades mais avançadas (acima de 16 anos), quanto maior a área basal total, menor o ICA. Tendência esta, também observada por PIENAAR; TURNBULL (1973).

Quando analisou-se o volume por hectare, resultados similares à área basal por hectare foram encontrados (Tabela 28, Anexo 2).

QUADRO 7- MÁXIMOS VALORES DE ICA E IMA EM ÁREA BASAL E IDADES EM QUE OCORREM PARA AS DUAS DENSIDADES EXTREMAS.

Densidade	ICA _{max}	Idade	IMA _{max}	Idade
(arv/ha)	(m²/ha/ano)	(anos)	(m ² /ha/ano)	(anos)
4444	5 , 132	5	3,866	8
625	2,697	10	1,980	16

FIGURA 46- EVOLUÇÃO DO ICA PARA ÁREA BASAL (MODELO DE CHAPMAN-RICHARDS).

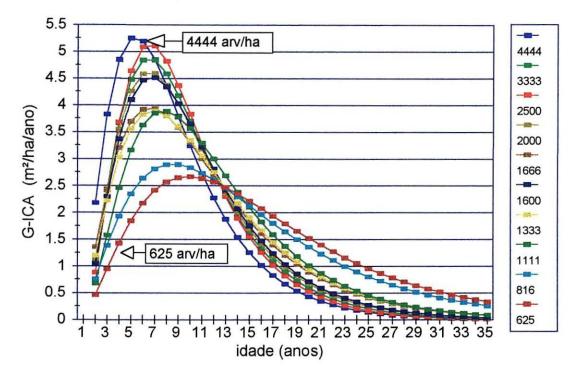


FIGURA 47- EVOLUÇÃO DO IMA PARA ÁREA BASAL (MODELO DE CHAPMAN-RICHARDS).

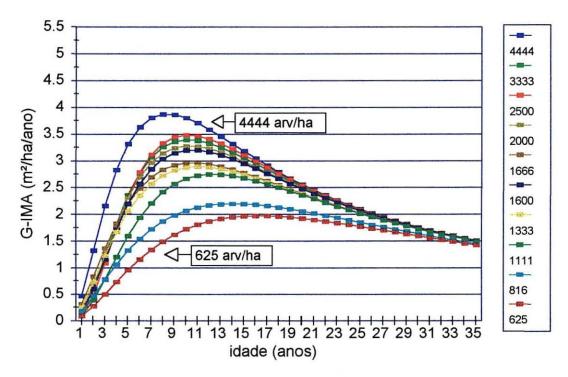


FIGURA 47- EVOLUÇÃO DO ICA PARA VOLUME TOTAL (MODELO DE CHAPMAN-RICHARDS).

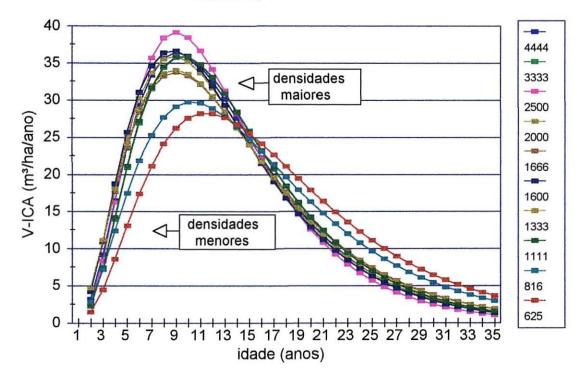
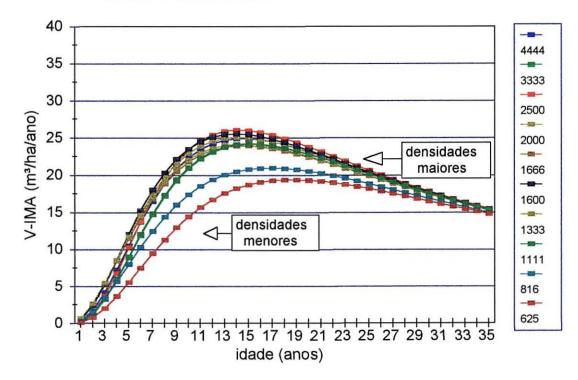
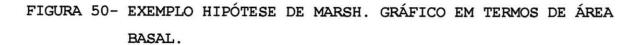



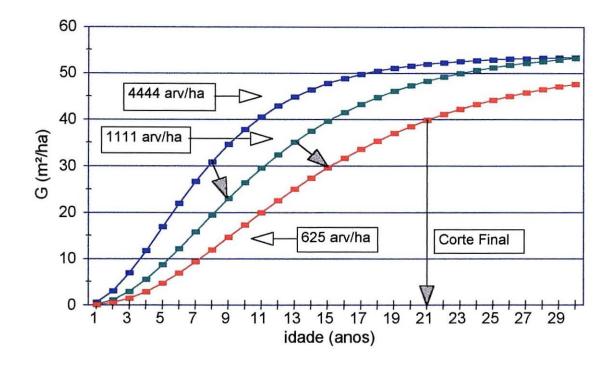
FIGURA 49- EVOLUÇÃO DO IMA PARA VOLUME TOTAL (MODELO DE CHAPMAN-RICHARDS).

4.4.1 APLICAÇÃO DA HIPÓTESE DE MARSH

Através das equações de Chapman-Richards ajustadas para as diferentes variáveis, pode-se determinar a idade em que o máximo IMA e ICA ocorrem.

Então foi possível simular diferentes alternativas de manejo, definindo a oportunidade e intensidade dos desbastes através desses incrementos e utilizando-se as curvas de produção.


Nos Quadros 8 e 9, assim como na Figura 50, mostram como exemplo, o enunciado da hipótese de Marsh (MARSH; BURGERS, 1973). Definindo-se uma estratégia de manejo hipotética, para a densidade de 4444 arv/ha e planejando-se executar os seguintes desbastes:


QUADRO 8- EXEMPLO HIPÓTESE DE MARSH. DESBASTES EM TERMOS DE ÁREA BASAL (G).

Desbaste Número	G inicial (m²/ha)	G residual (m²/ha)	N° inicial árvores	
			4444	
1	31	23		1111
2	35	30		625
Corte Fina	1 40			

QUADRO 9- EXEMPLO HIPÓTESE DE MARSH. IDADES APARENTE E REAL NO MOMENTO DE FAZER OS DESBASTES.

Desbaste Número	Idade aparente	Intervalo	Idade real no momento do corte
1	0 - 8	8	8
2	9 - 13	4	12
CF	15 - 21	6	18

No Quadro 8 observam-se os desbastes hipotéticos a serem realizados, onde partindo-se de uma densidade de 4444 arv/ha, faz-se um primeiro desbaste passando para 1111 arv/ha e logo para um segundo desbaste passando para 625 arv/ha, com as respectivas áreas basais iniciais e residuais para cada densidade e idade.

No Quadro 9 e Figura 50 observam-se as idades em que ditas áreas basais se produzem, ou seja, a idade em que é feito o desbaste e a idade em que se obtem o G residual na densidade correspondente após o desbaste.

No presente exemplo têm-se que o primeiro desbaste partindo da densidade de 4444 arv/ha para 1111 arv/ha é feito na

idade de 8 anos, então a idade aparente vai de 0 até 8 anos e o intervalo é 8 (idade real no momento do corte é 8 anos). O G residual que fica após o primeiro desbaste (23 m²/ha) encontra-se na curva de 1111 arv/ha na idade de 9 anos, ou seja, na curva dito valor se encontra um ano depois.

A partir daí, deixa-se crescer até os 13 anos (segundo a curva de 1111 arv/ha), onde é feito o segundo desbaste passando de 1111 para 625 arv/ha, ou seja, passando de um G = 35 para um G = 30 m²/ha, só que este valor de G = 30 m²/ha se encontra na curva de 625 arv/ha na idade de 15 anos (não na idade de 13), ou seja, na curva dito valor se encontra dois anos depois, então a idade aparente vai de 9 até 13 anos e o intervalo é 4, que somados aos 8 anos do primeiro desbaste dá a idade real no momento de fazer o segundo desbaste, ou seja, 12 anos.

Novamente a partir dessa idade deixa-se crescer até os 21 anos (segundo a curva de 625 arv/ha), idade na qual se faz o corte raso; então a idade aparente vai de 15 até 21 anos e o intervalo é 6, que somados aos 12 anos do segundo desbaste dá a idade real no momento de fazer o corte raso, ou seja, 18 anos.

A hipótese de Marsh diz que a produção em povoamentos desbastados é equivalente à de povoamentos não desbastados, mas que essa equivalência não se dá na mesma idade e sim em uma idade mais jovem no povoamento desbastado. No exemplo, a área basal cortada nos desbastes (8 e 5 m^2/ha) e no corte final (40 m^2/ha)

resulta 53 m^2/ha aos 18 anos. No povoamento não desbastado igual produção (53 m^2/ha) ocorre na idade de 21 anos.

Deve-se ressaltar que os desbastes (oportunidade e intensidade) não são reais, eles foram assim apresentados buscando-se interpretar a hipótese de Marsh. Segundo MARSH; BURGERS (1973), a hipótese deve ser ajustada para outras espécies, já que ele comprovou a hipótese para várias espécies implantadas do gênero *Pinus* e para *Eucalyptus grandís*, na África do Sul.

4.4.2 APLICAÇÃO DAS CURVAS DE PRODUÇÃO PARA SIMULAR REGIMES SILVICULTURAIS.

Segundo AHRENS (1992), uma vez que exista a intenção de se estabelecer um povoamento florestal com uma determinada espécie, sempre existirá a necessidade de se conceber (praticar) um regime silvicultural apropriado. Este regime silvicultural, por vezes também denominado regime de manejo, deverá incluir pelo menos os seguintes componentes:

- a) um espaçamento inicial;
- b) um regime de desbaste;
- c) um regime de poda (necessário somente se houver interesse na produção de madeira livre de nós);
- d) uma idade para rotação.

Sabe-se que depois que as mudas tenham sido plantadas em definitivo no campo, os desbastes e o corte raso são a forma mais eficiente que um proprietário florestal pode dispor para influenciar tanto na qualidade como na quantidade da produção de madeira. Evidentemente, a concepção e a implementação de um regime de poda adequado poderão contribuir substancialmente para a produção de madeira de elevado valor comercial, i.e. madeira livre de nós, se este for um dos objetivos para a produção.

Um programa ou regime de desbastes é, portanto, uma série de intervenções na vida de um povoamento florestal objetivando a redução da sua densidade (avaliada em termos de área basal, ou número de árvores por unidade de área) com o propósito de maximizar o valor líquido da madeira removida, durante toda a rotação. Dentre os fatores que determinam o valor da madeira estão a quantidade, a qualidade e as dimensões das toras, assim como os custos da sua exploração e aqueles do seu posterior processamento.

Um esquema simples de manejo seria definir o objetivo da produção da seguinte maneira:

- a) maximizar a obtenção de madeira, utilizando o critério de rotação da máxima produção física anual, que é a idade em que ocorre o máximo valor para o crescimento médio anual (IMA) em volume de madeira por unidade de área.
- b) maximizar a obtenção de madeira de grandes dimensões, ainda que em detrimento do volume total (sub-ocupação do sítio).

Neste caso o critério utilizado seria a rotação técnica, que é o tempo necessário para a produção de toras com determinadas dimensões especificadas (máximas ou mínimas), objetivando satisfazer as necessidades de uma utilização específica. Neste caso o critério seria fazer os desbastes próximos às idades em que ocorre o máximo ICA. Assim, uma vez obtido o número de árvores final desejado, o objetivo será que o máximo de volume se acumule sobre estas árvores; então a rotação final estará definida como a idade em que o máximo IMA é obtido.

c) misto, critério similar ao caso anterior, com a diferença de que os desbastes são realizados no intervalo de idades em que o máximo ICA e o máximo IMA em volume ou em área basal por hectare são obtidos e o corte final na idade que culmina o máximo IMA.

A eleição de uma determinada densidade de plantação, assim como a oportunidade e intensidade dos desbastes, depende de um certo número de variáveis, tais como: exigências biológicas da espécie, características do sítio, destino do produto, distância a os mercados e cultivos consorciados.

Segundo MARSH; BURGERS (1973), quando se planifica a produção de plantações homogêneas, é essencial conhecer a quantidade, qualidade e tamanho dos produtos que podem ser influenciados pelos desbastes.

No presente trabalho, constatou-se através da análise de variância a não existência de diferenças significativas em volume total (m^3/ha) entre as idades de 11 até 18 anos nas

densidades de 1111 até 4444 árvores por hectare. Nesta grande amplitude de densidades, o volume é estatísticamente equivalente, e a densidade inicial de plantação estará definida para o objetivo de produção, já que para 18 anos a árvore média na densidade de 1111 árvores por hectare têm 81% mais volume em relação à árvore média da densidade de 4444 árvores por hectare.

A partir dos 24 anos não foram verificadas diferenças significativas no volume total entre todas as densidades, ou seja, entre 4444 até 625 árvores por hectare (a árvore média na densidade de 625 e 1111 árvores por hectare têm respectivamente 79 e 36% mais volume, em relação a árvore média da densidade de 4444 árvores por hectare).

Por outro lado, os custos iniciais de implantação e manutenção da floresta nos primeiros anos, muda de acordo com a densidade inicial de plantação, tendo em conta não somente o custo da planta mas também o custo de manutenção daninhas, formigas e outros). Neste sentido, foi observado para os primeiros anos a densidade de 1600 árvores por hectare, como densidade na qual as árvores ficam suficientemente distanciadas de maneira que a competição entre as mesmas não mortalidade e por outro lado as árvores suficientemente próximos de maneira que restringem o efeito da concorrência com as ervas daninhas sobre a mortalidade.

Em relação a área basal, pode-se observar, que ainda aos 24 anos as duas menores densidade de plantação sub-ocupam o

sítio, resultado este coincidente com os obtidos por MACHADO (1978).

Com base nestas considerações, pode-se como exemplo, definir três alternativas de manejo, definindo as estratégias de desbaste para uma densidade em área basal ou volume que ocorra na mesma idade em que é realizado o desbaste.

4.4.2.1 Produção de Madeira

Partindo-se da densidade de 4444 arv/ha e fazendo o corte final onde se produz o máximo IMA em volume (Tabela 28, Anexo 2), obtem-se os valores que estão no Quadro 10, e a apresentação gráfica nas Figuras 51 e 52.

OUADRO 10- MAXIMIZAÇÃO DA PRODUÇÃO EM VOLUME (m³/ha)

Densidade	Idade	Desbaste	$V (m^3/ha)$	V (m³/ha)	N (arv/ha)
plantação	(anos)			-	posterior
(arv/ha)			desbaste	desbaste	desbaste
4444	14 c	orte final	352 , 40		

Da Tabela 17 (Anexo 2), extrai-se os seguintes valores das demais variáveis, para esta idade:

densidade = 4444 arv/ha

dg = 16,96 cm

Idade = 14 anos

 $\bar{h} = 13,81 \text{ m}$

G total = 46,48 m²/ha

 $h_{dom} = 16,72 \text{ m}$

 $\bar{d} = 16,03 \text{ cm}$

N = 2228 arv/ha

FIGURA 51- PROGNOSE DO VOLUME TOTAL PARA A DENSIDADE DE 4444 ARV/HA (ONDE OCORRE O MÁXIMO IMA EM VOLUME).

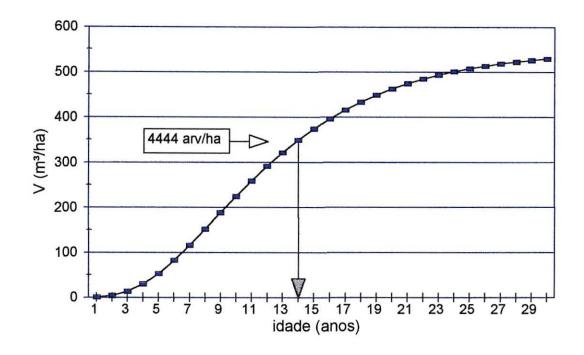
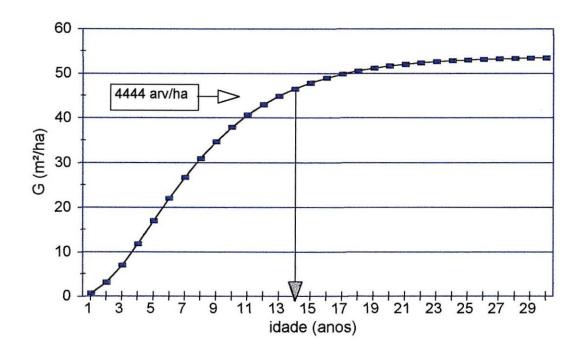



FIGURA 52- PROGNOSE DA ÁREA BASAL PARA A DENSIDADE DE 4444 ARV/HA (ONDE O MÁXIMO IMA EM VOLUME OCORRE).

4.4.2.2 Produção de Madeira Grossa

Partindo-se da densidade de 1600 arv/ha e fazendo um desbaste na idade de 9 anos (máximo ICA em volume), Tabela 28, Anexo 2, passando para a densidade de 625 arv/ha e corte final na idade de 18 anos (máximo IMA em volume), obtem-se os resultados que constam no Quadro 11, e a apresentação gráfica nas Figuras 53 e 54.

QUADRO 11- MAXIMIZAÇÃO DA PRODUÇÃO DE MADEIRA GROSSA (m³/ha).

Densidade plantação (arv/ha)				V (m³/ha) posterior desbaste	N (arv/ha) posterior desbaste
1600	9	1	200,68	116,66	625
	18	C.F.	350,62		

FIGURA 53- PROGNOSE DA PRODUÇÃO EM VOLUME PARA AS DENSIDADES DE 1600 E 625 ARV/HA.

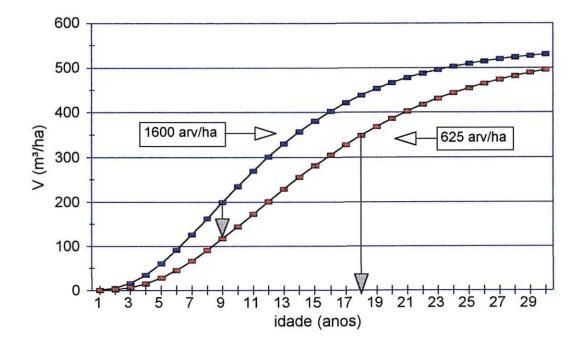
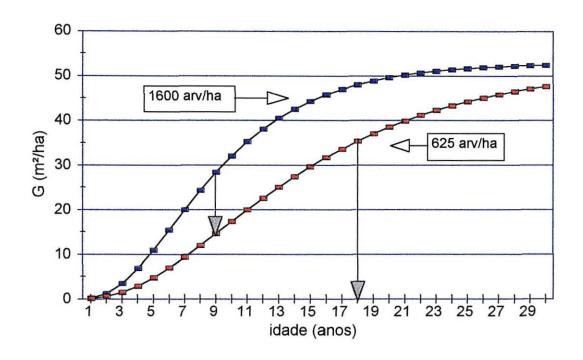



FIGURA 54- PROGNOSE DA PRODUÇÃO EM ÁREA BASAL PARA AS DENSIDADES DE 1600 E 625 ARV/HA.

Das Tabelas 21 e 26 (Anexo 2), extrai-se os valores das demais variáveis, para estas idades:

densidade	densidade	densidade
1600 arv/ha	625 arv/ha	625 arv/ha
I = 9 anos	I = 9 anos	I = 18 anos
$G = 28,36 \text{ m}^2/\text{ha}$	$G = 14,61 \text{ m}^2/\text{ha}$	$G = 35,39 \text{ m}^2/\text{ha}$
$\overline{d} = 14,90 \text{ cm}$	$\overline{d} = 18,17$ cm	$\overline{d} = 28,84 \text{ cm}$
dg = 15,43 cm	dg = 18,48 cm	dg = 29,29 cm
$\overline{h} = 10,56 \text{ m}$	$\overline{h} = 10,69 \text{ m}$	$\overline{h} = 17,44 \text{ m}$
$h_{dom} = 12,20 m$	$h_{dom} = 11,90 \text{ m}$	$h_{dom} = 18,66 \text{ m}$
N = 1474 arv/ha	N = 539 arv/ha	N = 528 arv/ha
$\overline{v} = 0,136 \text{ m}^3$	$\overline{v} = 0,216 \text{ m}^3$	$\overline{v} = 0,664 \text{ m}^3$

4.4.2.3 Misto

Partindo-se da densidade de 2000 arv/ha e fazendo um primeiro desbaste na idade de 8 anos (entre máximo ICA e máximo IMA em área basal), Tabela 27, Anexo 2, passando para a densidade de 1111 arv/ha e fazendo um segundo desbaste na idade de 12 anos (entre máximo ICA e máximo IMA em área basal) baixando para a densidade de 625 arv/ha e corte final aos 16 anos (máximo IMA em área basal), obtem-se os resultados que constam no Quadro 12, Figuras 55 e 56.

QUADRO 12- PRODUÇÃO MISTA (m²/ha).

Densidade plantação (arv/ha)			anterior	posterior	N (arv/ha) posterior desbaste
2000	8	1	25,12	19,45	1111
	12	2	32,46	22,55	625
	· 16	C.F.	31,68		•

Nas Tabelas 20, 24 e 26 (Anexo 2), é possível observar os valores das demais variáveis, para estas idades.

FIGURA 55- PROGNOSE DA PRODUÇÃO EM ÁREA BASAL PARA AS DENSIDADES
DE 2000, 1111 E 625 ARV/HA.

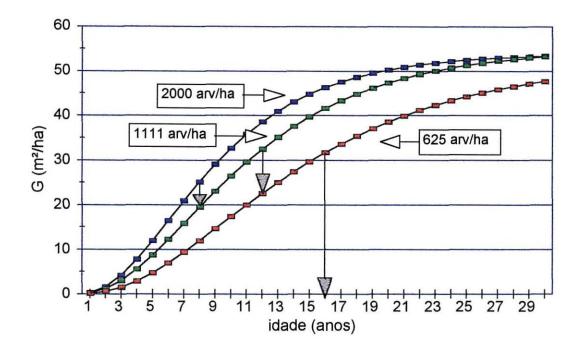
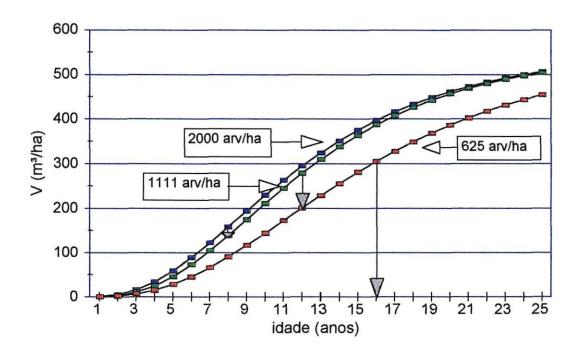
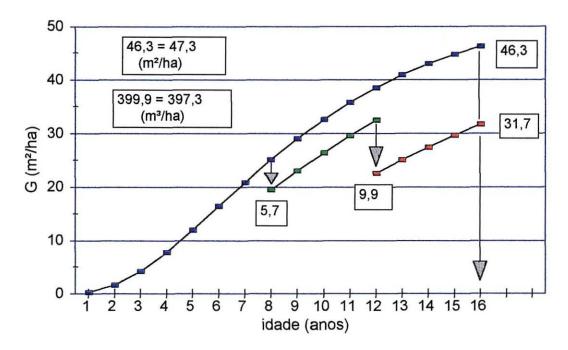



FIGURA 56- PROGNOSE DA PRODUÇÃO EM VOLUME PARA AS DENSIDADES DE 2000, 1111 E 625 ARV/HA.



4.4.3 APLICAÇÃO DA TEORIA DE MÖLLER

Nas Figuras 53 a 56, é possível observar a verificação da Teoria de Möller, citado por AHRENS (1992), que em um povoamento florestal não desbastado, a produção bruta por unidade de área, a longo prazo, é aproximadamente igual à produção total que seria obtida pelo valor acumulado das produções intermediárias (desbastes) acrescida da produção obtida no corte final, se o mesmo tivesse sido submetido a um regime de desbastes.

Como exemplo, analisando a alternativa de manejo Mista, observa-se o seguinte, conforme Tabelas 27 e 28, Anexo 2 e Figura 57:

FIGURA 57- TEORIA DE MÖLLER PARA AS DENSIDADES DE 2000, 1111 E 625 ARV/HA.

Manejo sem desbaste:

densidade 2000 arv/ha, o volume e área basal obtida na idade de 16 anos seria:

$$V_{16} = 399,87 \text{ m}^3/\text{ha}$$

$$G_{16} = 46,25 \text{ m}^2/\text{ha}$$

Manejo com desbastes:

densidade final 625 arv/ha, na idade de 16 anos,

$$V_{16} = 307,38 \text{ m}^3/\text{ha}$$

$$G_{16} = 31,68 \text{ m}^2/\text{ha}$$

desbastes:
$$V_{8,12} = 89,94 \text{ m}^3/\text{ha}$$
, $G_{8,12} = 15,58 \text{ m}^2/\text{ha}$

Total:

$$V_{8,12,16} = 397,32 \text{ m}^3/\text{ha}$$

$$G_{8,12,16} = 47,26 \text{ m}^2/\text{ha}$$

ou seja:

$$V_{16} = 399,87 \text{ m}^3/\text{ha} \cong V_{8,12,16} = 397,32 \text{ m}^3/\text{ha}$$

$$G_{16} = 46,25 \text{ m}^2/\text{ha} \cong G_{8,12,16} = 47,26 \text{ m}^2/\text{ha}$$

Para outras alternativas de manejo, inclusive com maior número de desbastes, as diferenças encontradas na aplicação da teoria de Möller, não superam 5% para a amplitude de densidades consideradas e para o intervalo de idades próximos onde se produzem o máximo ICA e máximo IMA, em área basal ou volume, já que passando este limite (máximo IMA), começa a mortalidade por concorrência.

5 CONCLUSÕES

O modelo hipsométrico de Curtis ajustou-se para toda a amplitude de diâmetros e idades com Coeficientes de Determinação ajustados (R^2_{aj}) que variaram de 0,951 a 0,976, erros padrões porcentuais da estimativa (S_{yx} %) de 6,13 a 7,40%, considerados baixos, e distribuição uniforme dos resíduos.

A densidade de plantação afetou significativamente o crescimento do diâmetro médio aritmético, diâmetro médio quadrático, área transversal média, volume médio e altura média. Para estas variáveis, observou-se uma relação direta com a idade e inversa com a densidade, ou seja, quanto maior a idade e menor a densidade maiores são os valores médios das mesmas.

Constatou-se que, para as médias de todas as variáveis estudadas, à exceção da altura média para densidades de 625 até 1333 arv/ha, a medida que transcorreu o tempo entre os 6 e 18 anos, as duas menores densidades de plantação (625 e 816 arv/ha), apresentaram diferenças significativas em relação a um número progressivamente maior de densidades, contadas a partir de 4444 arv/ha. Aos 22 e 24 anos observou-se um processo inverso, ou seja, um número cada vez maior de densidades a partir de 625 arv/ha não apresentaram diferenças significativas entre si.

Para cada densidade de plantio verificou-se a existência de uma idade a partir da qual, a concorrência afeta

significativamente o crescimento das variáveis estudadas, sendo esta idade inversamente proporcional à densidade.

Se o objetivo for não afetar o crescimento destas variáveis (exceto para altura média) em relação aos valores correspondentes às duas menores densidades de plantio, equivalentes a parcelas com árvores de crescimento livre, o primeiro desbaste deveria ser realizado antes de 6 anos para a densidade de 3333 e 4444 arv/ha, de 7 anos para 2000 e 2500 arv/ha, de 8 anos para 1600 e 1666 arv/ha, de 9 anos para 1333 arv/ha e 11 anos para 1111 arv/ha.

Como esperado, constatou-se ausência de efeitos significativos da densidade de plantio sobre a altura dominante, em todo o período estudado.

A maior concorrência nas maiores densidades trouxe como consequência maior mortalidade, principalmente nas árvores suprimidas e dominadas. Isto se traduz em um aumento da média das variáveis analisadas, a qual é diretamente proporcional à idade. Desta maneira, o número de médias de tratamentos que não se diferenciam entre si foi cada vez maior. Com essa tendência observada, é de se esperar que num período curto de tempo não existam diferenças significativas entre as médias de todos os tratamentos.

A densidade de plantação manifestou efeitos significativos sobre o número de árvores, para todas as idades de medição. Observou-se que, para todas as idades, a maior quantidade de árvores vivas resultou associada à maior densidade de plantação,

e que as diferenças significativas diminuiram através do tempo. Este último associa-se a taxas de mortalidade relativamente maiores nas densidades mais altas, como consequência da maior concorrência ocorrida nestas condições.

Verificou-se um efeito não significativo da densidade de plantio sobre a mortalidade de 6 até 8 anos, assim como efeitos significativos no período compreendido entre 9 até 24 anos. Durante os primeiros anos а mortalidade pareceu principalmente aleatórias (ataque de causas pragas, daninhas, enfermidades, concorrência ervas fatores COM climáticas, e outras). A partir dos 9 anos, no entanto, a concorrência entre árvores da população passou a ser o fator determinante da mortalidade, a qual, por sua vez, incrementou-se com o transcurso do tempo e com a densidade de plantio.

Α densidade de plantio influenciou de maneira. significativa o crescimento da área basal, para todas as idades de medição, manifestando uma relação direta. No período de 6 até 12 anos, as médias das maiores densidades iniciais, superaram significativamente às correspondentes a um número praticamente constante de tratamentos de menor densidade. Entre 12 até 24 anos observou-se uma tendência à diminuição do número de tratamentos com diferenças significativas. Isto está associado a existência uma amplitude de densidades (1111 até 4444 arv/ha) atingiram o nível máximo de área basal que o sítio estudado é capaz de suportar, aproximadamente 53 m²/ha.

A densidade de plantio mostrou um efeito significativo sobre o volume total. Até os 18 anos, as duas menores densidades (625 e 816 arv/ha), foram superadas pelas demais densidades. Aos 24 anos, não se observaram diferenças significativas entre as médias de todas as densidades. A amplitude de densidades estatísticamente equivalentes dos volumes, entre densidades de plantio tão extremas, indicam que a medida que aumenta a densidade, têm-se um mesmo volume distribuido em um maior número de árvores de volume médio proporcionalmente menor. No período compreendido entre 6 até 18 anos, os valores máximos de volume, encontram-se nas densidades médias. A partir desta idade até os 24 anos estes máximos encontram-se aleatóriamente na amplitude de densidades de 1111 até 4444 arv/ha.

As equações de Chapman-Richards e Prodan, testadas para modelar o crescimento das variáveis, descreveram adequadamente e eficientemente a evolução dessas variáveis dentro do intervalo de idades analisadas (6 até 24 anos) e para todas as densidades de plantio. Todavia, o modelo de Chapman-Richards estima de maneira mais realística os valores assintóticos das variáveis analisadas.

O modelo de Chapman-Richards estimou para todas as densidades um valor assintótico final em área basal e volume que o sítio é capaz de suportar, variando entre 50 até 55 m^2/ha para o primeiro e entre 514 até 570 m^3/ha para o segundo,

enquanto o modelo de Prodan estimou limites de 47 até $62 \text{ m}^2/\text{ha}$ e de 347 até $509 \text{ m}^3/\text{ha}$, respectivamente.

Embora os modelos de Prodan e Chapman-Richards tenham tido performance semelhantes, o modelo de Prodan têm a vantagem de ser linearizável, enquanto que o modelo de Chapman-Richards só pode ser ajustado por procedimentos não lineares, que podem levar a estimar coeficientes ilógicos não se conhecendo os prováveis valores dos coeficientes para iniciar as iterações e principalmente quando os dados de crescimento ainda não atingiram o valor assintótico da variável em estudo.

Obteve-se resultados satisfatórios na modelagem da sobrevivência, com o modelo de Silva e o modelo de Chapman-Richards modificado em função da idade e número de árvores. O modelo de Silva foi mais eficiente para descrever a evolução desta variável para todas as densidades de plantação.

Através da aplicação das curvas de produção para simular regimes silviculturais, foi possível confirmar a Teoria de Möller para Araucaria.angustifolia. Para outras alternativas de manejo, inclusive com maior número de desbastes, as diferenças encontradas na aplicação da teoria de Möller, não superaram 5% para as densidades estudadas, e para o intervalo de idades próximos onde se produzem o máximo ICA e máximo IMA, em área basal ou volume.

6 ANEXOS

6.1 ANEXO 1

QUADRO 13- DIÂMETRO MÉDIO ARITMÉTICO (cm) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

D			····		Idade				-
Den.	<u> </u>				(anos)	- 40	10		
(arv/ha)	6	7	8	9	11	12	18	22	24
	8,336	8,85	10,107	11,879	12,713	13,311	16,242	19,53	22,32
4444	8,87	8,863	10,176	11,997	13,35	13,789	18,831	21,42	23,37
	8,415	8,847	9,744	12,021	13,031	13,906	19,154	24	26,89
média	8,54	8,853	10,009	11,966	13,031	13,669	18,076	21,65	24,19
	9,976	10,32	11,329	12,942	14,057	14,859	18,949	21,58	24,71
3333	8,878	9,06	10,653	12,459	13,558	14,397	19,67	24,42	26,25
	7,999	9,256	10,317	12,475	13,719	14,563	18,532	20,48	22,77
média	8,951	9,545	10,766	12,625	13,778	14,606	19,05	22,16	24,58
	10,167	10,868	12,24	13,988	15,053	15,769	19,294	22,81	25,99
2500	11,075	11,418	12,965	13,995	15,309	15,825	19,368	22,85	25,17
	9,385	10,587	11,903	13,38	15,003	15,96	20,466	24,18	26,7
média	10,209	10,958	12,369	13,788	15,122	15,851	19,709	23,28	25,95
	11,45	11,913	13,474	14,743	15,993	16,658	20,224	23,33	26,11
2000	11,521	11,724	13,44	14,913	15,955	16,54	20,865	22,97	25,33
	9,322	10,808	12,13	14,838	15,935	16,71	20,477	24,32	26,4
média	10,764	11,482	13,015	14,831	15,961	16,636	20,522	23,54	25,95
	12,278	12,705	14,337	15,812	17,057	17,663	21,556	24,25	25,94
1600	10,87	11,511	13,258	15,211	16,682	17,918	21,789	25,56	28,31
	10,998	12,451	13,777	15,519	17,02	17,819	21,477	24,05	25,87
média	11,382	12,222	13,791	15,514	16,92	17,8	21,607	24,62	26,71
	11,83	12,279	13,962	15,658	16,786	17,584	21,458	24,19	25,69
1666	12,094	12,652	14,171	15,693	16,866	17,443	21,958	24,36	25,74
	9,709	10,793	12,202	14,641	16,259	16,954	21,44	26,7	28,25
média	11,211	11,908	13,445	15,331	16,637	17,327	21,619	25,08	26,56
	12,065	12,734	15,313	17,113	18,718	19,747	23,541	25,64	28,57
1333	12,483	13,305	15,135	16,416	17,805	18,429	21,491	22,94	26,59
	11,471	13,135	14,489	16,168	17,864	18,767	22,131	25 , 79	28,16
média	12,006		14,979	16,566	18,129	18,981	22,388	24,79	27,77
	12,768	14,033	15,532	17,803	19,546	20,476	23,892	27,38	29,51
1111		12,487				19,166			27,77
		13,521			19,069	19,744			28,34
média		13,347				19,795			28,54
		15,188				22,15	26,012		30,88
816	13,207	14,43		19,003		23,107			34,26
	10,069		14,206		18,963	20,486			29,19
média		13,846		18,215		21,914			31,44
		13,724			21,84	22,479			32,54
625		15,713				23,483			32,02
	 	12,525		17,475	20,8	22,411			32,32
média	12,167	13,987	16,242	18,709	21,54	22,791	28,507	30,91	32,29

QUADRO 14- DIÂMETRO MÉDIO QUADRÁTICO (cm) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

Den.					Idade (anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
,,		·	_						
	8,832	9,388	10,610	12,303	13,303	13,985	17,446	21,344	23,920
4444	9,365	9,444	10,815	12,517	14,006	14,538	19,999	22,832	24,980
	8,926	9,454	10,417	12,542	13,789	14,727	20,281	24,457	27,690
média	9,041	9,429	10,614	12,454	13,699	14,417	19,242	22,878	25,53
	10,307	10,722	11,759	13,348	14,593	15,418	19,669	22,424	25,550
3333	9,348	9,616	11,295	13,036	14,351	15,267	20,721	25,231	27,050
	8,396	9,695	10,823	12,865	14,292	15,230	19,478	21,672	24,240
média	9,35	10,011	11,292	13,083	14,412	15,305	19,956	23,109	25,613
	10,544	11,284	12,630	14,382	15,565	16,346	20,164	23,863	26,810
2500	11,348	11,745	13,345	14,363	15,746	16,302	20,109	23 , 635	25,920
	9,878	11,163	12,545	14,076	15,866	16,834	21,620	25,427	27,660
média	10,59	11,397		14,274	15,726	16,494	20,631	24,308	26,797
	11,766	12,280	13,817	15,147	16,480	17,217	20,993	24,128	26,830
2000	11,810	12,082	13,806	15,256	16,420	17,037	21,439	23,664	25 , 970
	9 , 978	11,467	12,890	15 , 370	16,565	17,367	21,512	25,224	27,290
média	11,185	11,943	13,504	15,258	16,488	17,207	21,315	24,339	26,697
	12,595	13,063	14,740	16,184	17,524	18,140	22,191	24,890	27,120
1600	11,411	12,147	14,029	15 , 878	17,499	18,668	22,779		29,380
	11,375	12,836	14,195	15,931	17,529	18,377	22,207	24 , 870	27,130
média	11,794	12,682	14,321	15,998		18,395	22,392	25,39	27,877
	12,251	12,733	14,458	16,107	17,351	18,147	22,180	24,890	26 , 970
1666	12,410	13,014	14,625	16,104	17,356	17,946	22,577	25,130	27,030
	10,405	11,551	13,070	15,424	17,231	18,087	22,918	27 , 730	29 , 670
média	11,689	12,433	14,051	15,878	17,313	18,06	22,558	25,917	27,89
	12,684	13,356	15,741	17,528	19,192	20,250	24,171	26,404	29,190
1333	12,747	13,585	15,467	16,750	18,226	18,886	22,266		27,570
	11,876	13,544	14,983	16,621	18,457	19,427	23,140	26,631	28 , 790
média	12,436	13,495	15,397	16,966	18,625	19,521	23,192	25,69	28,517
	13,177	14,443	16,024	18,194	20,012	21,021	24,667	28,015	30,060
1111				17,136			24,068		
	12,264		15,592			20,355		27,606	
média				17,628		20,371		27,577	
				19,358		22,561		29,038	.
816	14,451		18,664		22,966	24,461		33,387	
	10,450		14,584			20,958			
média	13,052		16,898			22,66	27,82	30,228	
	12,249		16,365	1		22,753		31,737	33,020
625			18,255			23,831	+	31,184	
	10,833		14,972		21,135	22,763	29,193		33,060
média	12,462	14,261	16,531	19,005	21,883	23,116	28,995	31,417	32,853

QUADRO 15- ÁREA TRANSVERSAL MÉDIA (cm²) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

	T	·			Idade			, 	
Den.					(anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	61.06	60.01	00.41	110.07	100.00	150.60	000 05	257 22	110 60
	61,26	69,21	88,41	118,87	138,98	153,62	239,05	357,82	449,60
4444	68,88	70,05	91,87	123,05	154,07	166,00	314,10	409,42	490,27
	62,58	70,18	85,23	123,55	149,33	170,32	323,07	469,76	601,95
média	64,24	69,81	88,5	121,82	147,46	163,31	292,07	412,33	513,94
	83,48	90,30	108,58	139,93	167,26	186,70	303,86	394,92	512,87
3333	68,63	72,62	100,20	133,44	161,74	183,07	337,20	500,00	574,89
	55,37	73,85	91,98	130,01	160,42	182,17	298,01	368,87	461,48
média	69,16	78,92	100,25	134,46	163,14	183,98	313,02	421,26	516,41
	87,25	100,00	125,29	162,47	190,30	209,87	319,33	447,26	564,94
2500	101,18	108,34	139,86	162,05	194,71	208,74	317,63	438,73	527,46
	76,64	97,85	123,62	155,63	197,71	222,56	367,08	507,77	601,22
média	88,36	102,06	129,59	160,05	194,24	213,72	334,68	464,59	564,54
	108,80	118,46	149,94	180,17	213,29	232,83	346,15	457,23	565,35
2000	109,54	114,67	149,70	182,78	211,76	227,97	361,03	439,80	529 , 78
	78,19	103,27	130,51	185,55	215,55	236,84	363,49	499,70	584,86
média	98,84	112,13	143,38	182,83	213,53	232,55	356,89	465,58	560
	124,69	134,03	170,63	205,72	241,21	258,46	386,74	486,71	577 , 55
1600	102,25	115,89	154,57	198,01	240,51	273 , 67	407,58	547,48	677 , 78
	101,71	129,44	158 , 23	199,33	241,31	265,21	387,32	485,86	578 , 13
média	109,55	126,45	161,14	201,02	241,01	265,78	393,88	506,68	611,15
·	117,86	127,32	164,20	203,78	236,47	258,62	386,36	486,36	571 , 34
1666	120,96	132,99	167,97	203,72	236,56	252,91	400,33	496,12	573 , 79
	85,11	104,80	134,13	186,85	233,15	256,96	412,51	604,12	691,23
média	107,98	121,7	155,43	198,12	235,39	256,16	399,73	528,87	612,12
1	126,28	140,07	194,57	241,34	289,25	322,07	458,84	547,56	669,48
1333	127,68	144,92	187,92	220,34	260,87	280,16	389 , 37	453,70	596,61
	110,85	144,08	176,33	216,99	267,58	296,40	420,52	557,03	650,55
média	121,6	143,02	186,27	226,22	272,57	299,54	422,91	519,43	638,88
	136,43	163,79	201,71	259 , 98	314,51	347,03	477,89	616,41	709,42
1111	101,18	132,63	180,72	230,65	284,52	305,91	454,95	577 , 27	639,14
	118,05	153,50	190,92	242,00	303,20	325,40	470,46	598,56	657 , 20
média	118,55	149,97	191,12	244,21	300,74	326,11	467,77	597,41	668,59
	159,49	187,73	238,96	294,37	360,32	399,71	561,81	662,24	774,08
816	163,99	194,44	273,69	318,61	414,21	469,88	745,28	875 , 49	989,34
	85 , 77	118,35	167,09	228,15	295,38	344,96	527,17	627,19	702,91
média	136,42		226,58	280,38	356,64	404,85		721,64	822,11
	117,86	154,51	210,45	281,76	384,43	406,62	658,97	791,09	856 , 57
625	160,61	200,34	261,71	323,76	393,85	445,98	652,65	763,78	829,15
<u></u>	92,12	128,21	176,01	247,99	350,92	406,96	669,41	770,88	859 , 71
média	123,53	161,02	216,06	284,5	376,4	419,85	660,34	775,25	848,48

QUADRO 16- ALTURA MÉDIA (m) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

Den.					Idade (anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	6,810	7,680	8,920	10,350	11,650	12,310	15,190	17,270	18,420
4444	7,070	7,680	8,840	10,330	11,860	12,440	16,110	17,710	18,810
	6,920	7,690	8,650	10,340	11,670	12,450	16,260	18,700	19,720
média	6,933	7,683	8,803	10,34	11,727	12,4	15,853	17,893	18,983
	7,410	8,260	9,290	10,520	11,860	12,570	15,670	17,170	18,100
3333	6,960	7,650	8,890	10,250	11,520	12,200	15,660	17,780	18,390
	6,640	7,820	8,830	10,370	11,720	12,390	15,410	16,670	17,590
média	7,003	7,91	9,003	10,38	11,7	12,387	15,58	17,207	18,027
	7,260	8,220	9,410	10,640	12,000	12,660	15,620	17,410	18,580
2500	7,610	8,490	9,650	10,640	12,120	12,730	15,730	17,580	18,420
	6,960	8,020	9,110	10,210	11,730	12,500	15,790	17,610	18,660
média	7,277	8,243	9,39	10,497	11,95	12,63	15,713	17,533	18,553
	7,620	8,520	9,770	10,800	12,250	12,900	16,060	17,800	18,810
2000	7,590	8,480	9,730	10,870	12,240	12,880	16,240	17,740	18,650
	6,690	7,920	8,990	10,740	12,130	12,830	15 , 870	18,030	18,810
média	7,3	8,307	9,497	10,803	12,207	12,87	16,057	17,857	18,757
	7,800	8,710	9,790	10,870	12,280	12,940	16,160	17,870	18,720
1600	7,260	8,110	9,180	10,520	11,950	13,200	16,030	18,110	19,320
	7,570	8,710	9,770	10,850	12,350	13,730	16,080	17,740	18,670
média	7,543	8,51	9,58	10,747	12,193	13,29	16,09	17,907	18,903
	7,660	8,640	9,860	11,020	12,430	13,150	16,160	17,710	18,380
1666	7,750	8,780	9,920	11,070	12,520	13,180	16,340	17,720	18,390
	6,890	7,970	9,100	10,620	12,110	12,690	15,730	18,060	18,800
média	7,433	8,463	9,627	10,903	12,353	13,007	16,077	17,83	18,523
	7,400	8,420	10,120	11,350	13,040	13,810	17,300	18,500	19,490
1333	7,750	8,870	10,130	11,230	12,820	13,500	16,500	17 , 730	18,960
	7,440	8,750	9 , 870	11,090	 	13,540	16,460	18,460	19,430
média	7,53	8,68	10,04	11,223	12,887	13,617	16,753	18,23	19,293
	7,510	8,730	9,880	11,260	12,960	13,700	16,930	18,740	19,540
1111	7,070	8,380	9,660	10,990	12,680	13,390	16,700	18,520	19,090
	7,320	8,600	9,790		12,780		16,700	18,670	19,280
média	7,3	8,57	9,777		12,807		16,777		19,303
	7,810	8,880	10,090	11,170		13,610		18,250	19,080
816	7,090	8,110	9,620	10,850		13,440	17,160	18,710	19,490
	6,570	7,820	9,180	10,540		13,160	16,340	17,930	18,610
média	7,157	8,27	9,63	10,853		13,403		18,297	19,06
	6,960	8,160	9,510	10,820		13,570	17,390	19,060	19,630
625	7,430	8,650	9,890	11,120		13,730	17,220	18,980	19,510
· · · · · · · · · · · · · · · · · · ·	6,670	7,880	9,180	10,560		13,530	17,330	18,810	19,420
média	7,02	8,23	9,527	10,833	12,753	13,61	17,313	18,95	19,52

QUADRO 17- ALTURA DOMINANTE MÉDIA (m) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

			··		Idade				
Den.		,			(anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	8,420	9,770	11,170	12,380	14,350	15,290	18,630	20,410	21,110
4444	8,570	9,800	11,200	12,440	14,400	15,280	18 , 770	20,460	21,100
	8,560	9,880	11,150	12,450	14,460	15,320	18,640	20,370	20,990
média	8,517	9,817	11,173	12,423	14,403	15,297	18,68	20,413	21,067
	8,700	9,960	11,100	12,330	14,030	14,770	18,390	19,920	20,580
3333	8,660	9,870	11,210	12,290	14,070	14,780	18,420	19,860	20,510
	8,390	9,780	11,010	12,140	13,970	14,770	18,330	19,770	20,410
média	8,583	9,87	11,107	12,253	14,023	14,773	18,38	19,85	20,5
	8,490	9 , 750	10,990	12,300	14,080	14,940	18,380	20,090	20,700
2500	8,630	9,770	11,080	12,180	13,970	14,700	18,170	19,790	20,490
	8,430	9,840	11,100	12,310	14,200	14,960	18,550	20,130	20,660
média	8,517	9,787	11,057	12,263	14,083	14,867	18,367	20,003	20,617
	8,810	10,090	11,430	12,660	14,460	15,300	18 , 750	20,360	21,030
2000	8,690	9,820	11,220	12,430	14,230	15,060	18,500	20,130	20,780
	8,650	10,020	11,300	12,530	14,390	15,210	18,970	20,610	21,230
média	8,717	9,977	11,317	12,54	14,36	15,19	18,74	20,367	21,013
	8,670	9,760	11,100	12,190	14,080	14,750	18,550	20,220	20,910
1600	8,680	9,850	11,210	12,390	14,300	15,110	18,750	20,380	21,050
	8,540	9,880	11,080	12,300	14,230	15,020	18,650	20,340	21,000
média	8,63	9,83	11,13	12,293	14,203	14,96	18,65	20,313	20,987
	8 , 720	9,990	11,320	12,420	14,140	14,790	18,420	19,780	20,480
1666	8 , 650	9,900	11,190	12,280	13,990	14,750	18,440	19,880	20,510
	8,590	9,940	11,320	12,520	14,330	15,060	18,690	20,160	20,750
média	8,653	9,943	11,277	12,407	14,153	14,867	18,517	19,94	20,58
	8 , 570	9,850	11,260	12,530	14,330	15,300	18,730	20,420	21,100
1333	8 , 570	9,890	11,340	12,530	14,460	15,320	18,900	20,590	21,240
	8,410	9,860	11,220	12,470	14,450	15,330	18,980	20,550	21,180
média	8,517	9,867	11,273	12,51	14,413	15,317	18,87	20,52	21,173
	8,370	9,760	11,040	12,340	14,280	15,190	18,810	20,440	21,130
1111	8,190	9,560	10,960	12,160	14,120	14,910	18,620	20,200	20,910
	8,250	9,710	11,030	12,300	14,260	15,060	18,810		21,060
média	8,27	9,677	11,01	12,267		15,053			
	8,630	9,810	11,090		14,170	14,950			
816	9,040	10,340	11,840	13,010		15,880	19,490		21,720
	7,900	9,220	10,640	11,990	13,900	14,850	18,570		20,860
média	8,523	9,79	11,19	12,44	14,37	15,227	18,857		21,067
	8,340	9,600	10,700			14,560	18,490		21,140
625	8,510	9,780	10,950	12,100	13,890	14,750			20,920
,	8,090	9,440	10,530	11,960	13,880	14,860	19,030		21,470
média	8,313	9,607	10,727	12,017	13,857	14,723	18,677	20,393	21,177

QUADRO 18- VOLUME DA ÁRVORE MÉDIA (m³) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

					Idade				
Den.					(anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	0,0202	0,0265	0,0414	0,0665	0,0868	0,1014	0,1914	0,3031	0,4216
4444	0,0262	0,0280	0,0460	0,0713	0,1018	0,1140	0,2702	0,3758	0,4669
	0,0221	0,0287	0,0410	0,0716	0,0979	0,1188	0,2794	0,4615	0,5869
média	0,0228	0,0277	0,0428	0,0698	0,0955	0,1114	0,247	0,3801	0,4918
	0,0354	0,0419	0,0579	0,0861	0,1136	0,1330	0,2557	0,3554	0,4864
3333	0,0257	0,0299	0,0527	0,0812	0,1103	0,1318	0,2942	0,4719	0,5561
	0,0158	0,0292	0,0447	0,0767	0,1073	0,1294	0,2513	0,3295	0,4300
média	0,0256	0,0337	0,0518	0,0813	0,1104	0,1314	0,2671	0,3856	0,4908
	0,0391	0,0503	0,0727	0,1079	0,1363	0,1566	0,2735	0,4148	0,5450
2500	0,0498	0,0568	0,0863	0,1072	0,1401	0,1546	0,2706	0,4033	0,5021
	0,0326	0,0507	0,0740	0,1043	0,1468	0,1720	0,3273	0,4838	0,5872
média	0,0405	0,0526	0,0777	0,1065	0,1411	0,1611	0,2905	0,434	0,5448
,	0,0568	0,0660	0,0954	0,1254	0,1594	0,1799	0,3016	0,4239	0,5447
2000	0,0574	0,0626	0,0955	0,1275	0,1576	0,1745	0,3162	0,4037	0,5039
	0,0355	0,0561	0,0815	0,1317	0,1627	0,1848	0,3224	0,4722	0,5681
média	0,0499	0,0616	0,0908	0,1282	0,1599	0,1797	0,3134	0,4333	0,5389
	0,0715	0,0807	0,1163	0,1508	0 , 1879	0,2060	0,3448	0,4557	0,5581
1600	0,0539	0,0667	0,1037	0,1453	0,1899	0,2241	0,3704	0,5253	0,6719
	0,0515	0,0764	0,1041	0,1446	0,1884	0,2136	0,3462	0,4559	0,5594
média	0,059	0,0746	0,108	0,1469	0,1887	0,2146	0,3538	0,479	0,5965
-	0,0665	0,0753	0,1106	0,1494	0,1837	0,2068	0,3450	0,4555	0,5515
1666	0,0683	0,0798	0,1143	0,1490	0,1833	0,2004	0,3596	0,4671	0,5541
	0,0415	0,0588	0,0858	0,1348	0,1834	0,2092	0,3794	0,5910	0,6891
média	0,0588	0,0713	0,1036	0,1444	0,1835	0,2055	0,3613	0,5045	0,5982
	0,0764	0,0892	0,1402	0,1876	0,2386	0,2737	0,4244	0,5249	0,6484
1333	0,0738	0,0903	0,1328	0,1654	0,2081	0,2287	0,3487	0,4222	0,5745
	0,0600	0,0908	0,1227	0,1628	0,2165	0,2474	0,3848	0,5363	0,6410
média	0,0701	0,0901	0,1319	0,1719	0,2211	0,2499	0,386	0,4945	0,6213
	0,0835	0,1097	0,1480	0,2069	0,2652	0,3009	0,4469	0,6019	0,7079
1111	0,0520	0,0809		0,1767	0,2338	0,2569	0,4217	0,5577	0,6289
	0,0668	0,1000	0,1370	0,1888	0,2540	0,2781	0,4390		0,6485
média	0,0674	0,0969	0,1374	0,1908	0,251	0,2786	0,4359	0,5803	0,6618
	0,1043	0,1319	0,1843	0,2428	0,3144	0,3573	0,5406	0,6542	0,7822
816	0,1175	0,1472	0,2286	0,2745	0,3797	0,4420	0,7549	0,9063	1,0387
	0,0384	0,0660	0,1123	0,1739	0,2445	0,2982	0,5021	0,6152	0,7018
média	0,0867	0,115	0,1751	0,2304	0,3129	0,3658	0,5992	0,7252	0,8409
	0,0658	0,0997	0,1547	0,2291	0,3396	0,3637	0,6484	0,8014	0,8779
625	0,1056	0,1448	0,2085	0,2737	0,3507	0,4079	0,6421	0,7690	0,8459
	0,0416	0,0739	0,1199	0,1936	0,3032	0,3647	0,6619	0,7798	0,8834
média	0,071	0,1061	0,161	0,2321	0,3312	0,3788	0,6508	0,7834	0,8691

QUADRO 19- ÁREA BASAL (m²/ha) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

					Idade				
Den.					(anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	23,046	25,603	30,580	36,923	40,363	42,856	51,609	53 , 780	50,490
4444	24,610	24,674	31,196	36,187	41,633	43,790	50,352	51,710	51,380
	22,359	24,812	29,481	34,307	39,962	41,493	50,976	51,580	55 , 500
média	23,338	25,03	30,419	35,806	40,653	42,713	50,979	52,357	52,457
	24,421	25,886	30 , 873	37,251	43,120	45,198	52 , 685	54,380	52,620
3333	17,693	18,459	25,348	29,895	36,231	39,686	49,134	50,800	50,820
	12,137	16,006	19,834	25,518	31,491	35 , 763	46,307	50,240	51,270
média	18,084	20,117	25,352	30,888	36,947	40,216	49,375	51,807	51,57
	18,076	20,569	25,120	31,517	36,669	40,166	50,710	53,000	52,200
2500	23,172	24,822	31,860	35,645	41,573	43,479	53,325	53,130	53,590
	13,564	17,322	21,717	26,937	33 , 707	36,502	50,183	53,570	53,990
média	18,271	20,904	26,232	31,366	37,316	40,049	51,406	53,233	53,26
	19,148	20,858	25,941	31,173	36,900	40,276	49,428	51,530	50,260
2000	20,166	21,105	27,320	32,482	37 , 628	40,510	50,396	53,040	52,130
	12,659	16,720	21,127	27,091	31,467	34,205	47,288	49,970	52,930
média	17,324	19,561	24,796	30,249	35,332	38,33	49,037	51,513	51,773
	18,638	19,850	25,274	29,850	34,998	37,136	46,952	48,300	47,070
1600	14,993	16,988	22,662	27 , 860	33,839	36,485	48,906		51,240
	15,497	19,736	24,133	29,821	36,104	38,883	51,630	53,250	53,130
média	16,376	18,858	24,023	29,177	34,98	37,501	49,163	50,883	50,48
	16,268	17 , 572	22,657	27 , 487	31,896	34,063	44,742	47,100	48,050
1666	18,809	20,684	26,122	30,696	35,653	37,333	48,920	51,200	51,010
	11,870	14,628	18,514	24,009	29,965	33,016	44,510	49,840	50,460
média	15,649	17,628	22,431	27,397	32,505	34,804	46,057	49,38	49,84
	13,684	15,172	20,434	24,926	29,883	33,269	42,813	49,280	52,420
1333	16,590	18,843	24,425	28,270	33,472	35,018	45,404	48,410	45,760
	13,469	17,288	21,158	25 , 668	31,198	34,561	46,934	51,080	53,150
média	14,581	17,101	22,006	26,288	31,518	34,283	45,05	49,59	50,443
	14,386	17,284	21,276	26,699	32,302	35,644	47,119	52,210	54,200
1111	9,967	12,521	17,057			28,454	40,401	45,720	48,830
	11,967		19,341		30,320	32,541			52,970
média	12,107	15,12	19,225			32,213			52
	11,059	13,005	16,564	20,397	24,974	27,703			44,200
816	10,038	11,900	16,745	18,828	24,483	27,773	39,500	1	46,400
	6,124	8,453	11,927	16,290	1	24,631	37,643		45,900
média	9,074	11,119	15,079	18,505		26,702	38,317		45,5
605	5,751	7,544	10,265	13,750	18,759	19,029			38,460
625	9,401	11,723	15,311	18,941	23,035	26,093	38,181	43,230	46,930
	5,033	7,005	9,613	13,542	19,155	22,220	36,547	42,090	46,940
média	6,728	8,757	11,73	15,411	20,316	22,447	35,189	40,28	44,11

QUADRO 20- NÚMERO DE ÁRVORES VIVAS (arv/ha) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

ſ				-	Idade			····	· ** - · · ·
	†				(anos)		•		
Den.	6	7	8	9	11	12	18	22	24
(arv/ha)									
	3762	3699	3459	3106	2904	2790	2159	1503	1123
4444	3573	3522	3396	2941	2702	2638	1603	1263	1048
	3573	3535	3459	2777	2676	2436	1578	1098	922
média	3636	3585,3	3438	2941,3	2760,6	2621,3	1780	1288	1031
	2927	2867	2843	2662	2578	2421	1734	1377	1026
3333	2578	2542	253,0	2240	2240	2168	1457	1016	884
	2192	2168	2156	1963	1963	1963	1554	1362	1111
média	2565,6	2525,6	2509,6	2288,3	2260,3	2184	1581,6	1251,6	1007
	2070	2057	2005	1940	1927	1914	1588	1185	924
2500	2291	2291	2278	2200	2135	2083	1679	1211	1016
	1770	1770	1757	1731	1705	1640	1367	1055	898
média	2043,6	2039,3	2013,3	1957	1922,3	1879	1544,6	1150,3	946
	1761	1761	1730	1730	1730	1730	1428	1127	889
2000	1841	1841	1825	1777	1777	1777	1396	1206	984
	1619	1619	1619	1460	1460	1444	1301	1000	905
média	1740,3	1740,3	1724,6	1655,6	1655,6	1650,3	1375	1111	926
	1496	1481	1481	1451	1451	1437	1214	993	815
1600	1466	1466	1466	1407	1407	1333	1200	933	756
	1525	1525	1525	1496	1496	1466	1333	1096	919
média	1495,6	1490,6	1490,6	1451,3	1451,3	1412	1249	1007,3	830
	1380	1380	1380	1349	1349	1317	1158	968	841
1666	1555	1555	1555	1507	1507	1476	1222	1032	889
	1396	1396	1380	1285	1285	1285	1079	825	730
média	1443,6	1443,6	1438,3	1380,3	1380,3	1359,3	1153	941,67	820
·	1083	1083	1050	1033	1033	1033	933	900	783
1333	1300	1300	1300	1283	1283	1250	1166	1067	767
	1216	1200	1200	1183	1166	1166	1116	917	817
média	1199,6	1194,3	1183,3	1166,3	1160,6	1149,6	1071,6	961,33	789
	1055	1055	1055	1027	1027	1027	986	847	764
1111	986	944	944	930	930	930	888	792	764
	1013	1013	1013	1000	1000	1000	958	833	806
média	1018	1004	1004	985,67	985,67	985,67	944	824	778
	693	693	693	693	693	693	673	633	571
816	612	612	612	591	591	591	530	510	469
	714	714	714	714	714	714	714	673	653
média	673	673	673	666	666	666	639	605,33	564,33
	488	488	488	488	488	468	468	449	449
625	585	585	585	585	585	585	585	566	566
	546	546	546	546	546	546	546	546	546
média	539,67	539,67	539,67	539,67	539,67	533	533	520,33	520,33

QUADRO 21- SOBREVIVÊNCIA (%) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

Den.	_				Idade (anos)	· · ·	.		·
(arv/ha)	6	7	8	9	11	12	18	22	24
	84,65	83,24	77,83	69,89	65,35	62,78	48,58	33,82	25,27
4444	80,4	79,25	76,42	66,18	60,8	59,36	36,07	28,42	23,58
	80,4	79,54	77,83	62,49	60,22	54,81	35,51	24,71	20,75
média	81,82	80,68	77,36	66,19	62,12	58,98	40,05	28,98	23,2
	87,82	86,02	85,3	79,87	77,35	72,64	52,02	41,31	30,78
3333	77,35	76,27	75,91	67,21	67,21	65,05	43,71	30,48	26,52
	65,77	65,05	64,69	58,9	58,9	58,9	46,62	40,86	33,33
média	76,98	75,78	75,3	68,66	67,82	65,53	47,45	37,55	30,21
	82,8	82,28	80,2	77,6	77,08	76,56	63,52	47,4	36,96
2500	91,64	91,64	91,12	88	85,4	83,32	67,16	48,44	40,64
	70,8	70,8	70,28	69,24	68,2	65,6	54,68	42,2	35,92
média	81,75	81,57	80,53	78,28	76,89	75,16	61,79	46,01	37,84
	88,05	88,05	86,5	86,5	86,5	86,5	71,4	56,35	44,45
2000	92,05	92,05	91,25	88,85	88,85	88,85	69,8	60,3	49,2
	80,95	80,95	80,95	73	73	72,2	65,05	50	45,25
média	87,02	87,02	86,23	82,78	82,78	82,52	68,75	55,55	46,3
1600	93,5	92,56	92,56	90,69	90,69	89,81	75,87	62,06	50,94
	91,62	91,62	91,62	87,94	87,94	83,31	75	58,31	47,25
	95,31	95,31	95,31	93,5	93,5	91,62	83,31	68,5	57,44
média	93,48	93,16	93,16	90,71	90,71	88,25	78,06	62,96	51,88
	82,83	82,83	82,83	80,97	80,97	79,05	69,51	58,1	50,48
1666	93,34	93,34	93,34	90,46	90,46	88,59	73,35	61,94	53,36
	83,79	83,79	82,83	77,13	77,13	77,13	64,77	49,52	43,82
média	86,65	86,65	86,33	82,85	82,85	81,59	69,21	56,52	49,22
	81,24	81,24	78,77	77,49	77,49	77,49	69,99	67,52	58,74
1333	97,52	97,52	97,52	96,25	96,25	93,77	87,47	80,04	57,54
	91,22	90,02	90,02	88,75	87,47	87,47	83,72	68,79	61,29
média	89,99	89,59	88,77	87,5	87,07	86,24	80,39	72,12	59,19
	94,96	94,96	94,96	92,44	92,44	92,44	88,75	76,24	68,77
1111	88,75	84,97	84,97	83,71	83,71	83,71	79,93	71,29	68,77
	91,18	91,18	91,18	90,01	90,01	90,01	86,23	74,98	72,55
média	91,63	90,37	90,37	88,72	88,72	88,72	84,97	74,17	70,03
•,,	84,93	84,93	84,93	84,93	84,93	84,93	82,47	77,57	69,97
816	75	75	75	72,43	72,43	72,43	64,95	62,5	57,47
	87,5	87,5	87,5	87,5	87,5	87,5	87,5	82,47	80,02
média	82,48	82,48	82,48	81,62	81,62	81,62	78,31	74,18	69,15
	78,08	78,08	78,08	78,08	78,08	74,88	74,88	71,84	71,84
625	93,6	93,6	93,6	93,6	93,6	93,6	93,6	90,56	90,56
	87,36	87,36	87,36	87,36	87,36	87,36	87,36	87,36	87,36
média	86,35	86,35	86,35	86,35	86,35	85,28	85,28	83,25	83,25

QUADRO 22- VOLUME TOTAL C/CASCA ATÉ 7 CM (m³/ha) PARA AS 3 REPETIÇÕES, PARA AS DIFERENTES DENSIDADES INICIAIS E IDADES DE MEDIÇÃO.

					Idade				
Den.					(anos)				
(arv/ha)	6	7	8	9	11	12	18	22	24
	70.44	00.10	140.06	206.64	050 40	0000	440.04	455 55	472 41
	76,11	98,18	143,06	206,64	252,13	282,8	413,21	455,55	473,41
4444	93,47	98,53	156,08	209,55	275,02	300,84	433,16	474,65	489,35
ļ	78,83	101,28	141,74	198,76	262,09	289,28	440,93	506,73	541,11
média	82,8	99,33	146,96	204,98	263,08	290,97	429,1	478,98	501,29
	103,54	120	164,61	229,29	292,92	321,95	443,47	489,34	499,05
3333	66,16	75,88	133,42	181,81	247,07	285,77	428,68	479,4	491,63
	34,53	63,23	96,39	150,52	210,61	254,06	390,54	448,83	477,74
média	68,08	86,37	131,47	187,21	250,2	287,26	420,9	472,52	489,47
0500	81,01	103,51	145,85	209,26	262,65	299,71	434,32	491,53	503,54
2500	113,98	130,23	196,68	235,86	299,19	322,1	454,42	488,38	510,16
	57,63	89,72	130,01	180,58	250,21	282,1	447,45	510,37	527,35
média	84,21	107,82	157,51	208,57	270,68	301,3	445,4	496,76	513,68
	100,08	116,26	164,96	216,96	275,72	311,33	430,7	477,71	484,28
2000	105,6	115,17	174,27	226,56	280,09	309,96	441,48	486,9	495,88
	57,44	90,75	131,92	192,26	237,6	266,87	419,47	472,16	514,16
média	87,71	107,39	157,05	211,93	264,47	296,05	430,55	478,92	498,11
1600	106,93	119,53	172,3	218,82	272,61	295,98	418,57	452,47	454,85
	79,05	97,81	152,06	204,41	267,25	298,7	444,46		507,97
	78,56	116,56	158,72	216,35	281,84	313,24	461,47		514,1
média	88,18	111,3	161,03	213,19	273,9	302,64	441,5	480,75	492,31
	91,76	103,94	152,68	201,49	247,8	272,27	399,54	440,97	463,78
1666	106,16	124,11	177,66	224,61	276,21	295,78	439,46	482,06	492,59
	57,99	82,1	118,41	173,25	235,62	268,83	409,42	487,55	503,04
média	85,3	103,38	149,58	199,78	253,21	278,96	416,14	470,19	486,47
	82,76	96,63	147,19	193,82	246,45	282,69	395,97	472,42	518,72
1333	95,9	117,4	172,62	212,27	267,03	285,85	406,64	450,53	449,83
	73,01	109,01	147,19	192,6	252,41	288,54	429,39	491,82	523,73
média	83,89	107,68	155,67	199,56	255,3	285,69	410,67	471,59	497,43
	88,05	115,76	156,09	212,44	272,41	309,01	440,63	509,84	540,86
1111	51,28	76,39	120,19	164,35	217,43	238,85	374,46		480,46
	67,67	101,33	138,82		254,04	278,14		484,34	
média	69	97,83	138,37			275,33		478,63	514,66
01.5	72,27	91,43	127,69			247,58			446,63
816	71,93	90,06	139,91	162,25	224,38	261,21			487,17
_ (, 1)	27,43	47,13	80,15		174,58	212,85			
média	57,21	76,21	115,92			240,55			
605	32,12	48,64	75,51	111,82		170,2	303,45		394,17
625	61,78	84,7	121,95	160,11	205,15	238,57	375,64		478,77
	22,7	40,35	65,49	105,68	165,57	199,11	361,38		482,32
média	38,87	57,9	87,65	125,87	178,81	202,63	346,82	406,94	451,75

6.2 ANEXO 2

TABELA 17- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 4444 ARV/HA (MODELO DE CHAPMANRICHARDS).

I	Ī -,	der	N	G	-	1	v
_	d	dg			h	h _{ckem}	_
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m ³ /ha)
1	1,347	1,356	4186,354	0,614	1,018	0,998	0,196
22	2,725	2,796	4107,553	3 , 033	2,220	2,451	2,652
3	4,074	4,222	4013,328		3,441	4,019	10,664
4	5,384	5,614	3903,355	11,793	4,640	5,592	26,221
5	6,650	6,964	3777,991	16,925	5 , 799	7,114	49,463
6	7,869	8,267	3638,292		6 , 907	8 , 558	79,185
7	9,043	9,521	3485,963	26 , 679	7 , 961	9,910	113,526
8	10,170	10,726	3323,250	30,925	8,959	11,163	150,500
9	11,252	11,882	3152,781	34,658	9,900	12,317	188,321
10	12,289	12,990	2977,396	37,881	10,786	13,373	225,551
11	13,284	14,050	2799,960	40,626	11,618	14,337	261,134
12	14,238	15,064	2623,212	42,939	12,398	15,212	294,369
13	15,151	16,034	2449,636	44,872	13,129	16,006	324,849
14	16,025	16,961	2281,371	46,477	13,812	16,724	352 , 397
15	16,863	17,847	2120,165	47,804	14,451	17,372	377,001
16	17,664	18,692	1967,355	48,897	15,047	17,956	398,766
17	18,430	19,499	1823,884	49,793	15,604	18,482	417,867
18	19,164	20,269	1690,333	50,526	16,122	18,955	434,521
19	19,866	21,004	1566,966	51,126	16,606	19,380	448,965
20	20,537	21,705	1453,785	51,615	17,056	19,761	461,435
21	21,178	22,373	1350,577	52,013	17,476	20,103	472,162
22	21,792	23,010	1256,971	52,337	17,866	20,410	481,360
23	22,379	23,617	1172,476	52,600	18,229	20,684	489,227
24	22,939	24,196	1096,528	52,814	18,567	20,930	495,942
25	23,476	24,748		52,988	18,881	21,150	501,662
26	23,988	25,274		53,129	19,173	21,347	506,527
27	24,478	25 , 775		53,243	19,445	21,523	510,660
28	24,946	26,252		53,336	19,697	21,681	514,168
29	25,393	26,707		53,412	19,932	21,821	517,141
30	25,821	27,140		53,473	20,150	21,947	519,661

TABELA 18- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 3333 ARV/HA (MODELO DE CHAPMANRICHARDS).

-	T	1		, 	T	T	1
I	d	dg	N	G	h	h _{ckom}	V
(anos)	(cm)	(cm)	(arv/ha)	(m ² /ha)	(m)	(m)	(m ³ /ha)
1	1,592	1,634	2869,675	0,157	1,019	1,249	0,044
2	3,111	3,219	2820,712	1,262	2,253	2,786	1,088
3	4,561	4,738	2768,288	3,740	3,510	4,347	5,903
4	5,945	6,192	2712,373	7,422	4,739	5,861	17,420
5	7,266	7,580	2652,963	11,885	5,919	7,299	37,060
6	8,527	8,905	2590,079	16,692	7,038	8,647	64,446
7	9,731	10,169	2523,771	21,492	8,093	9,902	97,938
8	10,879	11,375	2454,111	26,042	9,081	11,063	135,341
, 9	11,976	12,526	2381,201	30,198	10,004	12,131	174,459
10	13,022	13,622	2305,167	33,893	10,862	13,113	213,424
11	14,021	14,668	2226,160	37,112	11,659	14,011	250,822
12	14,974	15,664	2144,353	39,872	12,399	14,832	285,697
13	15,883	16,614	2059,941	42,210	13,082	15,581	317,495
14	16,752	17,519	1973,137	44,173	13,715	16,263	345,973
15	17,580	18,382	1884,171	45,809	14,298	16,884	371,116
16	18,371	19,204	1793,287	47,164	14,836	17,448	393,060
17	19,126	19,987	1700,738	48,282	15,332	17,960	412,035
18	19,846	20,733	1606 , 787	49,200	15,789	18,425	428,318
19	20,534	21,444	1511 , 701	49,952	16,210	18,847	442,206
20	21,190	22,122	1415,749	50,567	16,597	19,229	453,991
21	21,816	22,767	1319,201	51,068	16,953	19,576	463,950
22	22,414	23,382	1222,321	51,477	17,280	19,890	472,338
23	22,985	23,968	1125,371	51,809	17,580	20,174	479,383
24	23,529	24,526	1028,602	52,079	17,856	20,431	485,286
25	24,049	25,057		52,298	18,110	20,663	490,222
26	24,545	25,564		52,476	18,343	20,874	494,345
27	25,018	26,046		52,620	18,556	21,064	497,783
28	25,470	26,506		52,737	18,752	21,236	500,647
29	25,901	26,943		52,832	18,932	21,392	503,031
30	26,313	27,360		52,908	19,097	21,532	505,013

TABELA 19- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 2500 ARV/HA (MODELO DE CHAPMANRICHARDS).

I		dg	N	G		b.	v
_	d	_		_	h	h _{dom}	(m ³ /ha)
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	
1	2,148	2,186		0,243	1,339	1,167	0,220
2	3,938	4,042	2214,667	1,600	2 , 679	2,672	2,896
3	5 , 566		2188,150	4,313	3 , 960	4,227	11,456
4	7,073		2159,594	8,110	5 , 174	5,749	27 , 875
5	8,480		2128,887	12,575	6,319	7,204	52,203
6	9,800	10,170	2095,913	17,314	7,395	8 , 574	83,136
7	11,042	11,471	2060,555	22,026	8,405	9,851	118,725
. 8	12,213	12,697	2022,696	26,502	9,352	11,034	156,924
9	13,320	13,855	1982,216	30,621	10,239	12,124	195,907
10	14,367	14,949	1938,995	34,319	11,069	13,125	234,214
11	15,359	15,985	1892,911	37,581	11,845	14,041	270,780
12	16,298	16,966	1843,846	40,417	12,571	14,877	304,900
13	17,190	17,895	1791,679	42,858	13,250	15,639	336,172
14	18,036	18,775	1736,291	44,939	13,883	16,333	364,421
15 .	18,839	19,610	1677,565	46,701	14,476	16,963	389,646
16	19,602	20,403	1615,385	48,186	15,029	17,535	411,955
17	20,328	21,154	1549,640	49,431	15,545	18,053	431,533
18	21,017	21,868	1480,219	50,472	16,027	18,523	448,604
19	21,673	22,545	1407,016	51,339	16,476	18,948	463,411
20	22,296	23,189	1329,930	52,060	16,896	19,333	476,197
21	22,890	23,800	1248,863	52,658	17,288	19,681	487,197
22	23,454	24,380	1163,722	53,154	17,653	19,995	496,632
23	23,992	24,932	1074,422	53,564	17,994	20,279	504,705
24	24,503	25,456	980,881	53,903	18,312	20,536	511,596
25	24,990	25,954		54,182	18,609	20,767	517,469
26	25,454	26,428		54,413	18,886	20,976	522,466
27	25,896	26,878		54,604	19,144	21,165	526,712
28	26,317	27,306		54,761	19,384	21,335	530,317
29	26,717	27,713		54,890	19,609	21,488	533,375
30	27,099	28,100		54,997	19,818	21,626	535,966

TABELA 20- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 2000 ARV/HA (MODELO DE CHAPMANRICHARDS).

		_					
I	d	dg	И	G	h	h _{dom}	V
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	2,600	2,699	1863,601	0,251	1,159	1,190	0,304
2	4,551	4,724	1848,728	1,577	2,478	2,730	3,509
3	6,265	6,502	1832,464	4,165	3,791	4,320	12,973
4	7,820	8,113	1814,708	7,750	5,061	5 , 878	30,255
5	9,249	9,593	1795,352	11,952	6,271	7,365	55,038
6	10,575	10,965	1774,286	16,417	7,414	8,765	85,838
7	11,811	12,244	1751,393	20,870	8,488	10,069	120,703
8	12,969	13,440	1726,553	25,122	9,494	11,276	157 , 688
9	14,057	14,563	1699,642	29,056	10,433	12,388	195,111
10	15,080	15,619	1670,533	32,613	11,307	13,407	231,661
11	16,046	16,614	1639,094	35 , 772	12,120	14,340	266,400
12	16,958	17,553	1605,190	38,540	12,875	15,191	298,722
13	17,820	18,440	1568,683	40,939	13,576	15,965	328,291
14	18,636	19,280	1529,433	43,001	14,224	16,670	354,978
15	19,410	20,074	1487,297	44,761	14,825	17,309	378,799
16	20,143	20,827	1442,132	46,255	15,381	17,889	399,872
17	20,839	21,540	1393,791	47,517	15,894	18,414	418,378
18	21,500	22,217	1342,127	48,581	16,369	18,890	434,531
19	22,127	22,859	1286,995	49,474	16,808	19,319	448,559
20	22,723	23,469	1228,247	50,222	17,212	19,708	460,691
21	23,290	24,048	1165,737	50,847	17,586	20,059	471,146
22	23,829	24,598	1099,320	51,369	17,931	20,376	480,130
23	24,342	25,121	1028,855	51,804	18,249	20,662	487,831
24	24,830	25 , 619	954,199	52,167	18,542	20,920	494,419
25	25,295	26,092		52,468	18,813	21,153	500,045
26	25,737	26,542		52 , 719	19,062	21,363	504,842
27	26,159	26,970		52,927	19,292	21,553	508,928
28	26,560	27,378		53,100	19,503	21,723	512,405
29	26,942	27,765		53,244	19,699	21,877	515,360
30	27,307	28,135		53,363	19,878	22,015	517,870

TABELA 21- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 1600 ARV/HA (MODELO DE CHAPMANRICHARDS).

	_						
Ì	d	dg	N	G	h	h _{dom}	· V
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	2 , 794		1558,526	0,152	1,274	1,232	0,170
2	4,880	4,976	1552,107	1,178	2 , 639	2 , 759	2,592
3	6,707	6,874	1544,787	3,446	3,971	4,316	10,973
4	8,356	8,594	1536,455	6,814	5,244	5,834	27,673
5	9,866	10,172	1526,988	10,929	6,449	7,282	52,841
6	11,262	11,631	1516,252	15,412	7 , 583	8,646	84,984
7	12,559	12,987	1504,098	19,948	8,645	9,920	121,849
8	13,769	14,251	1490,363	24,310	9,638	11,104	161,092
9	14,901	15,434	1474,871	28,357	10,565	12,198	200,679
10	15,962	16,542	1457,428	32,010	11,428	13,207	239,045
11	16,959	17,583	1437,822	35,243	12,231	14,134	275,108
12	17,898	18,560	1415,826	38,060	12,978	14,985	308,213
13	18,781	19,481	1391,192	40,484	13,671	15,765	338,043
14	19,615	20,347	1363,653	42,550	14,315	16,477	364,525
15	20,401	21,164	1332,920	44,298	14,912	17 , 128	387 , 759
16	21,144	21,934	1298,684	45,768	15,466	17,723	407,948
17	21,846	22,661	1260,613	46,998	15,979	18,264	425,357
18	22,510	23,348	1218,350	48,023	16,454	18 , 758	440,274
19	23,139	23,997	1171,517	48,875	16,894	19,208	452,988
20	23,733	24,610	1119,709	49,581	17,302	19,617	463,780
21	24,297	25,189	1062,496	50,165	17,679	19,989	472,909
22	24,830	25 , 737	999,423	50,648	18,028	20,327	480,608
23	25,336	26,256	930,009	51,045	18,351	20,634	487,085
24	25,815	26,746	853,746	51,373	18,650	20,914	492,525
25	26 , 270	27,211		51,642	18,927	21,167	497,086
26	26,701	27,650		51,864	19,182	21,398	500,905
27	27,109	28,066		52,046	19,419	21,607	504,099
28	27 , 497	28,461		52,196	19,637	21 , 796	506,767
29 -	27,866	28,834		52,319	19,840	21,969	508,995
30	28,215	29,188		52,419	20,026	22 , 125	510,854

TABELA 22- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 1666 ARV/HA (MODELO DE CHAPMANRICHARDS).

I	d	dg	N	G	$\overline{\overline{\mathbf{h}}}$	h _{dom}	v
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	2,505	2,533	1538,928	0,295	1,124	1,240	0,426
2	4,517	4,624	1526,958	1,615	2,459	2,791	4,108
3	6,319	6 , 509	1513,970	4,004	3,803	4,372	13,919
4	7,968	8,241	1499,891	7,210	5,107	5,908	30,867
5	9,493	9,844	1484,640	10,925	6,349	7,367	54,439
6	10,911	11,336	1468,132	14,875	7,520	8,734	83,274
7	12,234	12,729	1450,279	18,847	8,615	10,004	115,704
8	13,474	14,033	1430,986	22 , 689	9,636	11,178	150,100
9	14,636	15,255	1410,153	26,304	10,583	12,256	185,052
10	15,729	16,402	1387,676	29,634	11,459	13,245	219,442
11	16,757	17,480	1363,443	32,652	12,268	14,148	252,444
12	17,725	18,494	1337,338	35,353	13,014	14,971	283,499
13	18,638	19,448	1309,238	37,746	13,701	15,720	312,266
14	19,500	20,347	1279,015	39 , 850	14,332	16,401	338,577
15	20,313	21,193	1246,534	41,687	14,912	17,019	362,392
16	21,081	21,991	1211,653	43,282	15,444	17,579	383 , 766
17	21,806	22,744	1174,224	44,662	15,932	18,086	402,813
18	22,492	23,454	1134,092	45,851	16,379	18,546	419,686
19	23,141	24,124	1091,097	46,873	16 , 788	18,961	434,561
20	23,754	24,756	1045,068	47,748	17 , 163	19,337	447,619
21	24,335	25,353	995,831	48,497	17,506	19,677	459,042
22	24,884	25,916	943,202	49,137	17,820	19,983	469,006
23	25,404	26,449	886,990	49,682	18,107	20,260	477,675
24	25,897	26,951	826,999	50,146	18,369	20,510	485,202
25	26,363	27,426		50,540	18,609	20,735	491,725
26	26,805	27,875		50 , 876	18,828	20,939	497,370
27	27,224	28,299		51,161	19,028	21,122	502,248
28	27,620	28,700		51,403	19,210	21,288	506,458
29	27,996	29,078		51,608	19,377	21,437	510,090
30	28,352	29,436		51,782	19,530	21 , 571	513 , 219

TABELA 23- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 1333 ARV/HA (MODELO DE CHAPMANRICHARDS).

I	-	alar .	N	G		1	v
	d	dg			h	h _{dom}	•
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
11	3 , 290	3,337	1261,140	0,320	0,947	0,999	0,614
2	5,564		1254,004	1,638	2,257	2,456	5,096
3	7,504		1246,254	3 , 948	3,650	4,030	16,012
4	9 , 228		1237,846	7,007	5 , 037	5,609	33,921
5	10,788		1228,736	10,539	6 , 378	7,138	58,056
6	12,216	12,565	1218,877	14,304	7,651	8 , 590	87,005
7	13,532	13,930	1208,221	18,113	8,844	9,949	119,178
8	14,751	15,194	1196,717	21,830	9,955	11,210	153,075
9	15,885	16,369	1184,311	25,362	10,982	12,371	187,423
10	16,943	17,465	1170,951	28,651	11,927	13,434	221,216
11	17,932	18,488	1156,578	31,668	12 , 794	14,404	253,709
12	18,858	19,446	1141,136	34,402	13,587	15 , 287	284,392
13	19,727	20,345	1124,564	36,856	14,310	16,087	312,949
14	20,543	21,188	1106,800	39,041	14,968	16,811	339,215
15	21,311	21,981	1087,782	40,974	15 , 567	17,464	363,142
16	22,034	22,726	1067,445	42,675	16,110	18,054	384,763
17	22,715	23,427	1045,723	44,166	16,602	18,585	404,171
18	23,357	24,088	1022,548	45,468	17,048	19,062	421,495
19	23,963	24,711	997,853	46,602	17,452	19,491	436,887
20	24,536	25,299	971,567	47,586	17,816	19,876	450,508
21	25,076	25,853	943,622	48,439	18,146	20,222	462,521
22	25 , 587	26 , 376	913,945	49,176	18,444	20,532	473,086
23	26,070	26,870	882,466	49,814	18,712	20,810	482,355
24	26,526	27,337	849,113	50,363	18,955	21,058	490,469
25	26,958	27,778		50,837	19,173	21,281	497,561
26	27,367	28,196		51,244	19,370	21,480	503,749
27	27,754	28,590		51,595	19,548	21,659	509,141
28	28,121	28,963		51,896	19,708	21,818	513,835
29	28,468	29,316		52,155	19,852	21,961	517,917
30	28 , 797	29,649		52 , 377	19,982	22,088	521,464

TABELA 24- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 1111 ARV/HA (MODELO DE CHAPMANRICHARDS).

I	ā	dg	N	G	$\frac{\overline{h}}{h}$	h _{dom}	v
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	2,706	2,841	1052,216	0,195	0,853	0,927	0,387
2	4,975	5,193	1047,865	1,143	2,098	2,324	3,667
3	7,023	7,304	1043,216	2,972	3,453	3,855	12,416
4	8,896	9,231	1038,251	5,558	4,823	5,405	27,687
5	10,622	11,002	1032,950	8,695	6,161	6,916	49,234
6	12,219	12,638	1027,293	12,172	7,441	8,358	76,035
7	13,701	14,154	1021,259	15,807	8,651	9,712	106,721
8	15 , 078	15,561	1014,824	19,454	9,783	10,973	139,876
9	16,360	16,869	1007,964	23,005	10,834	12,137	174,207
10	17,554	18,087	1000,655	26,385	11,806	13,205	208,630
11	18,667	19,222	992,870	29,546	12,701	14,182	242,292
12	19,707	20,280	984,581	32,461	13,521	15,071	274,562
13	20,677	21,268	975 , 758	35,121	14,272	15 , 879	305,011
14	21,583	22,190	966,372	37 , 526	14,957	16,611	333,368
15	22,430	23,051	956,390	39,684	15,582	17,273	359,498
16	23,222	23,856	945,778	41,609	16,150	17,870	383,362
17	23,963	24,608	934,500	43,317	16,666	18,408	404,996
. 18	24,656	25,312	922,520	44,826	17,134	18,893	424,488
19	25,304	25 , 970	909,799	46,156	17,559	19,328	441,957
20	25,910	26,585	896,296	47,322	17,943	19 , 720	457,543
21	26,478	27,161	881,968	48,344	18,291	20,071	471,397
22	27,010	27,700	866,771	49,237	18,606	20,386	483,672
23	27,507	28,205	850 , 658	50,015	18,890	20,669	494,518
24	27 , 973	28 , 677	833,580	50,693	19,147	20,922	504,078
25	28,410	29,119		51,283	19,379	21,149	512,488
26	28,819	29,533		51,795	19,588	21,352	519,873
27	29,201	29,921		52,240	19,777	21,534	526,349
28	29,560	30,284		52,625	19,948	21,697	532,020
29	29,896	30,624		52,959	20,102	21,842	536,980
30	30,211	30,943		53,248	20,240	21,973	541,315

TABELA 25- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 816 ARV/HA (MODELO DE CHAPMANRICHARDS).

I	ā	dg	N	G	h	h _{ckom}	v
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	1,750	1,867	705,859	0,116	0,731	0,986	0,192
2	3 , 939	4,171	701,681	0,731	1,900	2,432	2,202
3	6,184	6 , 517	697,401	1,994	3,219	3 , 998	8,267
4	8,381	8,802	693,019	3,867	4,577	5,571	19,725
5	10,484	10,981	688,536	6,232	5 , 919	7 , 095	36,819
6	12,472	13,034	683 , 953	8,949	7,211	8,543	58 , 972
7	14,335	14,953	679 , 270	11,881	8,436	9,898	85 , 151
8	16,070	16,734	674,488	14,911	9,582	11,156	114,147
9	17 , 678	18,383	669,608	17,943	10,648	12,314	144,775
10	19,165	19,903	664,631	20,905	11,631	13,375	175,984
11	20,535	21,300	659 , 558	23,743		14,344	206,907
12	21,796	22,583	654,392	26,423	13,359	15,224	236,878
13	22,953	23,759	649,132	28,923	14,112	16,022	265,413
14	24,013	24,834	643,781	31,232	14,796	16,744	292,190
15	24,984	25 , 817	638,342	33,347	15,416	17,396	317,018
16	25 , 873	26,715	632,814	35,271	15,977	17,984	339,813
17	26,685	27,533	627,202	37,012	16,485	18,513	360,570
. 18	27,426	28,279	621,506	38,580	16,943	18,989	379,340
19	28,102	.28,959	615,730	39 , 985	17,355	19,417	396,213
20	28,719	29 , 578	609,875	41,241	17 , 727	19,800	411,308
21	29,281	30,142	603,944	42,360	18,061	20,145	424,753
22	29,794	30,654	597,939	43,354	18,362	20,453	436,687
23	30,260	31,120	591,864	44,236	18,632	20,730	447,247
24	30,685	31,543	585,721	45,016	18,874	20,977	456,567
25	31,072	31,928		45 , 706	19,092	21,199	464,773
26	31,424	32,278		46,314	19,287	21,397	471,985
27	31,744	32,596		46,850	19,462	21,574	478,312
28	32,035	32,884		47,322	19,619	21,733	483,856
29	32,300	33,146		47,737	19,759	21,875	488,706
30	32,541	33,384		48,102	19,885	22,002	492,946

TABELA 26- EVOLUÇÃO DAS DIFERENTES VARIÁVEIS DO POVOAMENTO PARA
A DENSIDADE DE 625 ARV/HA (MODELO DE CHAPMANRICHARDS).

					,	T	
I	d	dg	N	G	h	h _{dom}	V
(anos)	(cm)	(cm)	(arv/ha)	(m²/ha)	(m)	(m)	(m³/ha)
1	1,099	1,187	547,387	0,080	0,572	1,104	0,107
2	3,018	3,179	546,357	0,518	1,637	2,545	1,359
3	5,254	5,464	545,317	1,443	2,918	4,047	5,438
4	7,596	7,837	544,268	2,859	4,287	5,532	13,621
5	9,928	10,189	543,210	4,705	5,671	6,963	26,460
6	12,183	12,457	542,143	6,893	7,026	8,322	43,853
7	14,321	14,605	541,067	9,329	8,323	9,600	65,242
8	16,320	16,615	539 , 982	11,927	9,548	10,794	89,813
9	18,172	18,476	538,887	14,606	10,691	11,904	116,658
10	19,874	20,189	537,784	17,303	11,748	12,931	144,890
11	21,428	21,756	536,671	19,965	12,721	13,879	173,708
12	22,842	23,184	535,550	22,552	13,610	14,752	202,433
13	24,122	24,479	534,419	25,034	14,420	15,553	230,521
14	25,278	25,652	533,280	27,392	15,154	16,289	257,556
15	26,319	26,710	532,131	29,611	15,819	16,962	283,242
16	27,254	27,664	530,974	31,685	16,419	17,579	307,379
17	28,093	28,521	529,808	33,612	16,959	18,142	329,855
18	28,844	29,291	528,632	35,392	17,445	18,656	350,622
19	29,515	29,981	527,448	37,028	17,881	19,126	369,683
20	30,115	30,600	526,255	38,528	18,271	19,553	387,081
21	30,650	31,153	525,052	39,897	18,621	19,943	402,882
22	31,127	31,648	523,842	41,143	18,934	20,299	417,174
23	31,552	32,090	522,622	42,275	19,214	20,622	430,055
24	31,931	32,485	521,393	43,300	19,464	20,916	441,628
25	32,267	32,838		44,227	19,687	21,184	451,997
26	32,567	33,152		45,064	19,886	21,427	461,266
27	32,833	33,433		45,819	20,064	21,649	469,535
28	33,069	33,682		46,498	20,222	21,850	476,898
29	33,279	33,905		47,108	20,363	22,033	483,445
30	33,465	34,104		47,656	20,488	22,199	489,258

TABELA 27- PRODUÇÃO (m²/ha) E CRESCIMENTO (m²/ha/ano) EM ÁREA BASAL PARA DIFERENTES DENSIDADES DE PLANTAÇÃO (MODELO DE CHAPMAN-RICHARDS).

idade	4444	IMA	ICA	3333	IMA	ICA	2500	IMA	ICA	2000	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	arresa	cresc
1	0,614	0,614		0,157	0,157		0,243	0,243		0,251	0,251	
2	3,033	1,516	2,419	1,262	0,631	1,105	1,600	0,800	1 , 357	1,577	0,788	1,326
3	6 , 974	2,325	3,941	3 , 740	1,247	2,479			2,713			
4	11,793									7,750		
5							12,575					
6							17,314					
7							22,026					
8							26,502					
9							30,621					
10							34,319					
11							37 , 581					
12							40,417					
13							42,858					
14							44,939					
15							46,701	-				
16							48,186					
17							49,431					
18	-			-			50,472		_			
19							51,339					
20							52,060					
21							52 , 658					
22							53 , 154					
23							53 , 564					
24							53 , 903					
25		_					54 , 182					
26					_		54,413					
27							54,604					
28							54 , 761					
29							54,890					
30							54,997					
31							55 , 085					
32							55 , 157					
33							55,216					
34							55 , 265					
35							55,306					
36							55 , 339					
37							55,366					
38							55 , 389					
39							55,407					
40	53 , 702	1,343	0,007	53 , 196	1,330	0,009	55,422	1,386	0,015	53 , 852	1 , 346	0,018

TABELA 27- CONTINUAÇÃO.

idade	1666	IMA	ICA	1600	IMA	ICA	1333	IMA	ICA	1111	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc
1	0,295	0,295		0,152	0,152		0,320	0,320		0,195	0,195	
2	1,615	0,807	1,320	1,178	0,589	1,026	1,638	0,819	1,319	1,143	0,572	0,948
3	4,004	1,335	2,390	3 , 446	1,149	2,268	3 , 948	1,316	2,310	2 , 972	0,991	1,829
4	7,210	1,803	3,206	6,814	1,704	3,369	7,007	1 , 752	3 , 058	5,558	1,390	2,586
5	10,925	2,185	3 , 715	10,929	2 , 186	4,115	10,539	2,108	3,532	8 , 695	1 , 739	3,137
6	14,875	2,479	3 , 950	15,412	2,569	4,483	14,304	2,384	3,765	12,172	2,029	3,477
7	18 , 847	2,692	3 , 972	19,948	2 , 850	4,536	18,113	2 , 588	3,810	15 , 807	2,258	3 , 635
8	22,689	2,836	3,843	24,310	3,039	4,363	21,830	2,729	3 , 717	19,454	2,432	3 , 647
9	26,304	2,923	3,615	28,357	3,151	4,046	25,362	2,818	3,532	23,005	2,556	3,551
10	29 , 634	2,963	3,330	32,010	3,201	3,654	28,651	2 , 865	3,289	26 , 385	2 , 638	3,380
11	32,652	2,968	3,018	35,243	3,204	3,233	31,668	2 , 879	3,017	29,546	2 , 686	3,161
12	35,353	2,946	2,701	38,060	3,172	2,816	34,402	2,867	2,734	32,461	2 , 705	2,916
13	37 , 746	2,904	2,393	40,484	3,114	2,424	36,856	2 , 835	2,454	35,121	2,702	2,660
14	39,850	2,846	2,104	42,550	3,039	2,066	39,041	2,789	2,185	37,526	2 , 680	2,405
15	41,687	2 , 779	1,837	44,298	2 , 953	1,748	40,974	2,732	1,933	39,684	2,646	2,158
16	43,282	2 , 705	1,596	45,768	2,860	1,470	42,675	2 , 667	1,701	41,609	2,601	1 , 925
17	44,662	2,627	1,380	46 , 998	2 , 765	1,230	44,166	2,598	1,491	43,317	2,548	1 , 708
18	45,851	2,547	1,189	48,023	2 , 668	1,025	45,468	2,526	1,302	44,826	2,490	1,509
19	46,873	2,467	1,022	48 , 875	2,572	0,852	46,602	2,453	1,133	46,156	2,429	1,329
20	47,748	2 , 387	0,876	49,581	2 , 479	0,706	47 , 586	2 , 379	0,984	47,322	2,366	1,167
21	48,497	2,309	0,749	50,165	2,389	0,584	48,439	2,307	0,853	48,344	2,302	1,022
22	49,137	2,233	0,639	50,648	2,302	0,482	49,176	2,235	0 , 738	49,237	2,238	0,893
23	49 , 682	2,160	0,545	51,045	2,219	0,398	49,814	2,166	0,637	50,015	2 , 175	0,779
24	50,146	2,089	0,464	51,373	2,141	0,328	50,363	2,098	0,550	50,693	2,112	0,678
25	50 , 540	2,022	0,395	51,642	2,066	0,270	50,837	2,033	0,473	51,283	2,051	0,590
26	50 , 876	1 , 957	0,336	51,864	1,995	0,222	51,244	1,971	0,408	51 , 795	1,992	0,512
27	51,161	1,895	0,285	52,046	1,928	0,182	51,595	1,911	0,351	52,240	1,935	0,444
28	51,403	1,836	0,242	52,196	1,864	0,150	51,896	1,853	0,301	52 , 625	1 , 879	0,385
29	51,608	1 , 780	0,205	52 , 319	1,804	0,123	52,155	1 , 798	0,259	52,959	1,826	0,334
30	51 , 782	1 , 726	0,174	52 , 419			52 , 377			53 , 248		0,289
31	51,929	1,675	0,147	52,502			52,568	1,696	0,191	53,498	1,726	0,250
32	52,054		0,125	52 , 570			52 , 732			53,715	1,679	
33										53 , 902		
34										54,064		
35										54 , 203		
36										54,324		
37										54 , 428		
38										54,519		
39										54,596		
40	52,563	1,314	0,033	52,816	1,320	0,014	53,428	1,336	0,048	54,664	1,367	0,067

TABELA 27- CONTINUAÇÃO.

idade	816	IMA	ICA	625	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc
1	0,116	0,116		0,080	0,080	
2	0,731	0,365	0,615	0,518	0,259	0,438
3	1,994	0,665	1,263	1,443	0,481	0,925
4	3 , 867	0,967	1 , 873	2 , 859	0,715	1,416
5	6 , 232	1,246	2,365	4,705	0,941	1,846
6	8,949	1,491	2,717	6,893	1,149	2,188
7	11,881	1 , 697	2 , 932	9 , 329	1 , 333	2,437
8	14,911	1,864	3,030	11,927	1,491	2,597
9	17,943	1,994	3 , 032	14,606	1,623	2,680
10	20,905			17,303		
11	23,743	2 , 158	2 , 839	19 , 965	1,815	2,662
12	26,423		2 , 680			2 , 587
13	28 , 923	2 , 225	2 , 500	25,034	1,926	2,482
14	31,232	2,231	2 , 309	27,392	1,957	2 , 357
15	33 , 347	2,223	2 , 115	29,611	1,974	2,219
16	35,271	2,204	1 , 924	31 , 685	1,980	2 , 074
17	37 , 012		1,741	33,612		
18	38,580	2,143	1 , 567	35 , 392		
19	39 , 985		1,405	37 , 028	1,949	
20	41,241			38 , 528		
21	42,360	2,017		39 , 897	1,900	1,369
22	43,354		0,994	41,143		1,246
23	44,236		0,882	42 , 275	1,838	1,132
24	45,016	1 , 876	0 , 780	43,300	1,804	1,025
25	45 , 706	1,828	0 , 689	44,227	1 , 769	0,927
26	46,314			45,064	1 , 733	0 , 837
27 ′	46 , 850	1 , 735	0 , 536	45,819	1,697	0,754
28	47,322			46,498	1,661	0 , 679
29	47,737		0,415	47,108	1,624	0,610
30	48,102		0,365	47 , 656		0,548
31	48,423		0,320	48 , 148		0,492
32	48,704		0,281	48 , 589	1,518	0,441
33	48,951			48,984		0,395
34	49 , 167	1,446	0,216	49,338	1,451	0,354
35	49 , 357	1,410	0,190	49 , 655	1,419	0,317
36	49 , 523	1,376	0,166	49,938	1,387	0,283
37	49,668	1,342	0,146	50,191	1,357	0,253
38	49,796	1,310	0,127	50,418	1 , 327	0,226
39	49,907	1,280	0,112	50,620	1,298	0,202
40	50,005	1,250	0,098	50 , 800	1 , 270	0,181

TABELA 28- PRODUÇÃO (m³/ha) E CRESCIMENTO (m³/ha/ano) EM VOLUME PARA DIFERENTES DENSIDADES DE PLANTAÇÃO (MODELO DE CHAPMAN-RICHARDS).

idade	4444	IMA	ICA	3333	IMA	ICA	2500	IMA	ICA	2000	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc
1	0,20	0,20		0,04	0,04		0,22	0,22		0,30	0,30	
2	2 , 65	1,33	2 , 46	1,09	0 , 54	1,04	2 , 90	1,45	2 , 68	3,51	1,75	3,20
3	10,66	3 , 55	8,01	5 , 90	1 , 97	4,82	11,46		8 , 56	12,97	4,32	9,46
4	26,22	6 , 56	15,56	17,42	4,35	11,52	27 , 87	6 , 97	16 , 42	30 , 25	7 , 56	17,28
5	49,46	9,89	23,24	37 , 06	7,41	19,64	52,20	10,44		55,04		24,78
6	79 , 18	13,20	29 , 72	64,45		27,39		13 , 86		85 , 84	14,31	30,80
7	113,53	16,22	34,34	97 , 94	13,99	33,49				120,70	17,24	34,87
8	150,50	18,81	36 , 97	135,34		37 , 40	156 , 92	19 , 62		157 , 69	19,71	36,98
9	188,32	20,92	37,82	174,46	19,38	39,12	195,91	21,77	38,98	195,11	21,68	37,42
10	225,55	22,56	37,23	213,42	21,34	38 , 97	234,21	23,42	38 , 31	231 , 66	23,17	36,55
11	261,13	23,74	35 , 58	250,82	22,80	37,40			36 , 57	266,40	24,22	34,74
12	294,37	24,53	33,23	285,70	23,81	34,88		25,41	34,12	298,72	24,89	32,32
13	324,85	24,99	30,48	317,50	24,42	31,80	336,17	25 , 86		328,29	25,25	29,57
14	352,40	25,17	27,55	345 , 97	24,71	28 , 48	364,42	26 , 03	28,25	354 , 98	25 , 36	
15	377,00	25,13	24,60	371,12	24,74	25,14	389 , 65	25 , 98	25 , 22	378 , 80	25,25	23,82
. 16	398,77	24,92		393,06			411,95			399 , 87	24,99	21,07
17	417,87	24,58	19,10	412,03	24,24	18 , 97	431,53	25 , 38		418,38	24,61	18,51
18	434,52	24,14	16 , 65	428,32	23,80	16 , 28				434,53	24,14	16,15
19	448,97	23,63	14,44	442,21	23,27	13,89	463,41	24 , 39	14,81	448,56		14,03
20	461,44	23,07	12,47	453 , 99	22,70	11,78				460,69		12,13
21	472,16	22,48		463 , 95	22,09	9,96			11,00	471,15		10,46
22	481,36	21,88	9,20	472,34	21,47	8 , 39			9,44	480,13		8 , 98
23	489,23	21,27	7 , 87	479 , 38		7,04	504,70	21,94	8 , 07	487,83		7 , 70
24	495,94	20 , 66	6 , 71	485,29	20,22	5 , 90		21,32	6 , 89	494,42		6,59
25	501,66	20,07	5 , 72	490,22	19,61	4,94		20,70	5 , 87	500,05		5,63
26	506,53	19,48	4,87	494,34		4,12	522 , 47	20,09	5 , 00	504,84		4,80
27	510,66	18,91	4,13	497,78	18,44	3,44	526 , 71	19,51	4,25	508,93		4,09
28	514 , 17	18 , 36	3 , 51	500,65		2 , 86		18 , 94	3 , 61	512,40		3 , 48
29	517,14	17,83	2 , 97	503,03		2,38	533 , 37	18,39	3 , 06	515,36		2,96
30	519 , 66	17,32	2 , 52	505,01	16,83	1,98		17 , 87	2 , 59	517,87	17,26	2,51
31	521 , 79	16,83		506,66		1,65			2,19	520,00	16,77	2,13
32	523 , 60	16,36		508,03		1 , 37	540,02	16,88	1,86	521,81	16,31	1,81
33	525,13			509,17			541,59			523 , 34		
34	526 , 42			510,11			542 , 92			524 , 64		1,30
35	527,51			510,90			544,05			525 , 75		
36	528,43			511,55			545,00			526 , 68		
37	529,21			512,08			545,80			527,47		
38	529 , 87			512 , 53			546,48			528,14		
39	530,42			512 , 90			547 , 05			528 , 71		
40	530,89	13,27	0,47	513,21	12,83	0,31	547,54	13,69	0,48	529 , 19	13,23	0,48

TABELA 28- CONTINUAÇÃO.

idade	1666	IMA	ICA	1600	IMA	ICA	1333	IMA	ICA	1111	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	cresc	Prod.	cresc	
1	0,43	0,43		0,17	0,17		0,61	0,61		0,39	0,39	
2	4,11	2,05	3 , 68	2,59	1,30	2,42	5,10	2,55	4,48	3,67	1,83	3,28
3	13,92	4,64	9,81	10,97	3,66	8,38	16,01	5,34	10,92	12,42	4,14	8 , 75
4	30,87	7,72	16,95	27 , 67	6,92	16,70	33,92	8,48	17,91	27,69	6,92	15,27
5	54,44	10,89	23 , 57	52,84	10,57	25,17	58,06	11,61	24,14	49,23	9,85	21,55
6	83 , 27	13,88	28,83	84,98	14,16	32,14	87,00	14,50	28,95	76,03	12 , 67	26,80
7	115,70	16,53	32,43	121,85	17,41	36,86	119,18	17,03	32,17	106,72	15,25	30,69
8	150,10	18 , 76	34,40	161,09	20,14	39,24	153,08	19,13	33,90	139,88	17,48	33,15
9	185,05			200,68			187,42	20,82	34,35	174,21	19,36	34,33
10	219,44	21,94	34,39	239,05	23,90	38,37	221,22	22,12	33,79	208,63	20,86	34,42
11	252,44	22,95		275,11		36,06	253,71	23,06	32,49	242,29	22,03	33,66
12	283,50	23,62	31,05	308,21	25 , 68	33,11	284,39	23,70	30,68	274,56	22,88	32,27
13	312,27	24,02	28 , 77	338,04	26,00	29 , 83	312,95	24,07	28,56	305,01	23,46	30,45
14	338,58	24,18	26,31	364,52	26,04	26,48	339,22	24,23	26 , 27	333,37	23,81	28,36
15	362 , 39	24,16	23,82	387 , 76	25,85	23,23	363,14	24,21	23,93	359,50	23,97	26 , 13
16	383,77	23,99	21,37	407,95	25 , 50	20,19	384,76	24,05	21,62	383,36	23,96	23,86
17	402,81	23,69	19,05	425,36	25,02	17,41	404,17	23 , 77	19,41	405,00	23,82	21,63
18	419,69	23,32	16 , 87	440,27	24,46	14,92	421,50	23,42	17,32	424,49	23,58	19,49
19	434,56			452 , 99		12,71	436,89	22,99	15,39	441,96	23,26	17,47
20	447,62	22 , 38	13,06	463 , 78	23,19	10,79	450,51	22,53	13,62	457,54	22,88	15,59
21	459,04	21,86	11,42	472,91	22,52	9,13	462,52	22,02	12,01	471,40	22,45	13,85
22	469,01	21,32	9,96	480,61	21,85	7,70	473 , 09	21,50	10,56	483,67	21,99	12,27
23	477,68	20,77	8,67	487,09	21,18	6,48	482,35	20 , 97	9,27	494,52	21,50	10,85
24	485,20	20,22	7 , 53	492,53	20,52	5,44	490,47	20,44	8,11	504,08	21,00	9,56
25	491,72	19 , 67	6 , 52	497,09	19,88	4,56	497,56	19,90	7,09	512,49	20,50	8,41
26	497,37	19,13	5 , 64	500,90	19,27	3,82	503,75	19,37	6,19	519,87	20,00	7,39
27	502,25	18,60	4,88	504,10	18,67	3,19	509,14	18,86	5,39	526,35	19,49	6,48
28	506,46	18,09	4,21	506 , 77	18,10	2,67	513,84	18,35	4,69	532,02	19,00	5 , 67
29	510,09	17,59		509,00		2,23	517,92	17,86	4,08	536,98	18,52	4,96
30	513 , 22	17,11	3,13	510 , 85	17,03	1,86	521,46	17,38	3 , 55	541,31	18,04	4,33
31	515,91	16,64	2 , 69	512,40	16 , 53	1 , 55	524,54	16,92	3,08	545,10	17 , 58	3 , 78
32	518,23	16,19	2,32	513 , 70		1,29	527,22	16,48	2,67	548,40	17,14	3,30
33	520,23	15 , 76	1,99	514,77	15,60	1,08	529,53	16,05	2,32	551,28	16,71	2,88
34	521,94	15,35	1 , 72	515 , 67	15,17	0,90	531 , 54	15 , 63		553 , 79		
35	523,42	14,95	1,47	516,42	14,75					555,98	15,89	2,19
36	524,68	14,57	1,27	517,04	14,36		534 , 79			557 , 88	15,50	1,90
37	525 , 77	14,21	1,09	517,56	13,99		536,10			559 , 54	15,12	1,66
38	526,71	13,86	0,93	517,99	13,63	0,43	537,23	14,14	1,13	560,98	14,76	1,44
39	527,51			518,35			538,21			562,23		
40	528,20	13,20	0,69	518,65	12,97	0,30	539,06	13,48	0,85	563,32	14,08	

TABELA 28- CONTINUAÇÃO.

idade	816	IMA	ICA	625	IMA	ICA
(anos)	Prod.	cresc	cresc	Prod.	cresc	cresc
1	0,19	0,19		0,11	0,11	
2	2,20	1,10	2,01	1,36	0,68	1,25
3	8,27	2,76	6 , 07	5,44	1,81	4,08
4	19,73	4,93	11,46	13,62	3,41	8,18
5	36,82	7,36	17,09	26,46	5,29	12,84
6	58,97	9,83	22,15	43,85	7,31	17,39
7	85,15	12,16	26,18	65,24	9,32	21,39
8	114,15	14,27	29,00	89,81	11,23	24,57
9	144,77	16,09	30,63	116,66	12,96	26,85
10	175,98	17,60	31,21	144,89	14,49	28,23
11	206,91	18,81	30,92	173,71	15 , 79	28,82
12	236,88	19,74	29 , 97	202,43	16,87	28,73
13	265,41	20,42	28,53	230,52	17,73	28,09
14	292,19	20,87	26 , 78	257 , 56	18,40	27,04
15	317,02	21,13	24,83	283,24	18,88	25,69
16	339,81	21,24	22,80	307,38	19,21	24,14
17	360 , 57	21,21	20,76	329,86	19,40	22,48
18	379,34	21,07	18,77	350,62	19,48	20,77
19	396,21	20,85	16,87	369,68	19,46	19,06
20	411,31	20,57	15,09	387,08	19,35	17,40
21	424,75	20,23	13,45	402,88	19,18	15,80
22	436,69	19,85	11,93	417,17	18,96	14,29
23	447,25	19,45	10,56	430,06	18,70	12,88
24	456,57	19,02	9,32	441,63	18,40	11,57
25	464,77	18,59	8,21	452,00	18,08	10,37
26	471,98	18,15	7,21	461,27	17,74	9,27
27	478,31	17,72	6,33	469,53	17 , 39	8,27
28	483,86	17,28	5,54	476 , 90	17,03	7,36
29	488,71	16,85	4,85	483,44	16,67	6 , 55
30	492,95	16,43	4,24	489,26	16,31	5,81
31	496,65	16,02	3 , 70	494,41	15 , 95	5,16
32	499,88	15,62	3,23	498,98	15 , 59	4,57
33	502,70	15,23	2,82	503,02	15,24	4,04
34	505,15		2,45			3,58
35	507,29		2,14	509 , 76	14,56	
36	509,15			512 , 55	14,24	2,79
37	510,77		1,62	515,01	13,92	2,46
38	512,18	13,48	1,41	517,19	13,61	2,17
39	513,40		1,23	519,11	13,31	1,92
40	514,47	12,86			13,02	1,69

7 REFERÊNCIAS BIBLIOGRÁFICAS

- AHRENS, S. A seleção simultânea do ótimo regime de desbastes e da idade de rotação, para povoamentos de Pinus taeda L., através de um modelo de programação dinâmica. Curitiba, 1992. 189 f. Tese. (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná.
- 2 ALDER, D. Forest volume estimation and yield prediction. Rome: FAO, 1980. v. 2, 194 p.
- 3 ASSMANN, E. The principles of forest yield study. Oxford: Pergamon Press, 1970, 506 p.
- 4 BLANCO JORGE, L. A. Equação de relação hipsométrica para povoamentos de *Pinus elliottii* Engelm na Floresta Nacional de Três Barras, SC. <u>Brasil Florestal</u>, Brasilia, v. 56, p. 41-47, 1983.
- 5 BUCHMAN, R. G.; PEDERSON, S. P.; WALTERS, N. R. A tree survival model with application to species of the Great Lakes region. <u>Can. J. For. Res</u>., Ottawa, v.13, p. 601-608, 1983.
- 6 BUFORD, M. A.; HAFLEY, W. L. Probability distributions as models for mortality. <u>For. Sci.</u>, Bethesda, v. 31, p. 331-341, 1985.
- BUCKMAN, R. E. Growth and yield of red pine in Minnesota.

 <u>USDA. Technical Bulletin</u>, Washington, n. 1272, p. 1-50,

 1962.
- 8 BURGER, D. <u>Ordenamento florestal I</u>: a produção florestal. 4. ed. Curitiba: Fundação de Pesquisas Florestais do Paraná. 1980. 124 p.
- 9 CAMPOS, J. C. C. Análise do crescimento e da produção em plantações desbastadas. <u>Árvore</u>, Viçosa, v. 4, n. 2, p. 157-169, 1980.
- 10 CHAPMAN, D. G. Statistical problems in population dynamics. In: BERKELEY SYMPOSIUM ON MATHEMATICAL STATISTICS AND PROBABILITY (4.: 1961: Univ. Calif. Press, Berkeley and Los Angeles). Proceedings of Fourth Berkeley Symposium on Mathematical Statistics and Probability. Univ. Calif. Press, Berkeley and Los Angeles, 1961. p. 153-158.

- 11 CLUTTER, J. L. Compatible growth and yield models for loblolly pine. Forest Science, Bethesda, v. 9, n. 3, p. 354-371, 1963.
- 12 CLUTTER, J.L.; JONES JR., E. P. Prediction of growth after thinning in old field slash pine plantations.

 Research Paper. SE. USDA. Forest Service, Asheville, n. 217, p. 1-14, 1980.
- 13 CRECHI, E. H.; FRIEDL, R. A.; FERNÁNDEZ, R. A. El efecto de la densidad de plantación sobre el crecimiento en Araucaria angustifolia (Bert.) O. Ktze. PARTE III: Volúmenes de la masa. In: JORNADAS TÉCNICAS, INVENTARIOS MODELOS DE PRODUCCIÓN Y CRECIMIENTO FORESTALES (6.:1991: Eldorado). Acta. Eldorado: Facultad de Ciencias Forestales, 1991. p. 306-320.
- 14 CRECHI, E. H.; FRIEDL, R. A.; FERNÁNDEZ, R. A. Evolución de la relación hipsométrica en función de la edad para Araucaria angustifolia (Bert.) O. Ktze. <u>Yvyraretá</u>, Eldorado, n.3, p. 86-92, 1992.
- 15 CURTIS, R. O. Height Diameter and Height Diameter Age Equations For Second Growth Douglas-Fir. Forest Science, Bethesda, v.13, n. 4, p. 365-375, 1967.
- 16 DANIEL, P. W.; HELMS, V. E.; BAKER, F. S. <u>Principios</u> de Silvicultura. México: Mc-Graw Hill. 1982. 492 p.
- 17 DE HOOGH, R. J.; DIETRICH, A. B.; AHRENS, S. Classificação de sítio, tabelas de volume e de produção para povoamentos artificiais de *Araucaria angustifolia*. Brasil Florestal. Brasilia, v. 9, n. 36, p. 58-82, 1978.
- 18 DELL, T. R. et al. Yields of unthinned slash pine plantations on cutover sites in the West Gulf region.

 RES. PAP. SO. USDA. For. Serv., New Orleans, n. 147, p. 1-84, 1979.
- 19 DRAPER, N. R.; SMITH, H. <u>Applied Regression Analysis</u>. 2. ed. New York: John Wiley, 1981. 709 p.
- 20 FAHLER, J. C.; DI LUCCA, C. M. Tabla de Producción de Araucaria angustifolia (Bert.) O. Ktze. I) Datos preliminares para 10 densidades. Edad 8 años. In: IUFRO MEETING ON FORESTRY PROBLEMS OF GENUS ARAUCARIA (1.: 1979: Curitiba). Forestry problems of the genus Araucaria. Curitiba: FUPEF, 1980. p. 339-346.

- 21 FAHLER, J. C. et al. Comportamiento de 10 diferentes densidades de plantación inicial en *Pinus taeda* L. a los 8 años de edad en suelos del Complejo 9 (C.A.R.T.A.) en la Provincia de Misiones. <u>Informe Técnico</u>, INTA, Misiones, n. 46, p. 1-14, 1986.
- 22 FASSOLA, H. E.; BRANDAN, S. Diagrama preliminar de manejo de la densidad para Araucaria angustifolia (Bert.) O. Ktze., en Misiones (Argentina). In: JORNADAS TÉCNICAS, INVENTARIOS MODELOS DE PRODUCCIÓN Y CRECIMIENTO FORESTALES (6.:1991: Eldorado). Acta. Eldorado: Facultad de Ciencias Forestales, 1991. p. 330-335.
- 24 FERNÁNDEZ, R. A.; CRECHI, E. H.; FRIEDL, R. A. El efecto de la densidad de plantación sobre el crecimiento en Araucaria angustifolia (Bert.) O. Ktze. PARTE II: número de árboles, mortandad, área basal y altura dominante. In: JORNADAS TÉCNICAS, INVENTARIOS MODELOS DE PRODUCCIÓN Y CRECIMIENTO FORESTALES (6.:1991: Eldorado). Acta. Edorado: Facultad de Ciencias Forestales, 1991. p. 291-305.
- 23 FERNÁNDEZ, R. A.; CRECHI, E. H.; FRIEDL, R. A. Evaluación del comportamiento de la altura dominante como medida de la calidad de sitio para *Araucaria angustifolia* (Bert.) O. Ktze. Interciencia. Mérida, v.19, n.6, p.343-346, 1994.
- FIGUEIREDO FILHO, A. Estudos de modelos matemáticos para estimar o volume por unidade de área em uma floresta tropical úmida na Amazônia Brasileira. Curitiba, 1983.

 150 f. Dissertação (Mestrado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná.
- 26 FIGUEIREDO FILHO, A. <u>Influência da resinagem no crescimento de Pinus elliottii Engelm. var. elliottii e sua avaliação econômica</u>. Curitiba, 1991. 138 f. Tese (Doutorado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná.
- 27 FRIEDL, R. A.; FERNÁNDEZ, R. A.; CRECHI, E. H. Estudio del comportamiento de la función altura edad en la evaluación de la calidad de sitio para Araucaria angustifolia (Bert.) O. Ktze. Yviraretá, Eldorado, v. 2, p. 42-50, 1991a.
- 28 FRIEDL, R. A.; FERNÁNDEZ, R. A.; CRECHI, E. H. El efecto de la densidad de plantación sobre el crecimiento en Araucaria angustifolia (Bert.) O. Ktze. Parte I: Dimensiones del árbol medio. In: JORNADAS TÉCNICAS, INVENTARIOS-MODELOS DE PRODUCCIÓN Y CRECIMIENTO FORESTALES (6.:1991: Eldorado). Acta. Eldorado: Facultad de Ciencias Forestales, 1991b. p. 277-290.

- 29 GOLFARI, L. Regiones potencialmente aptas para plantaciones de *Pinus* y otras coníferas en América Latina. <u>IDIA Suplemento Forestal</u>, Buenos Aires, v. 2, p. 19-48, 1965.
- 30 HARMS, W. R. An empirical function for predicting survival over a wide range of densities. Gen. Tech. Rep. SE. USDA. For. Service, Asheville, n. 24, p. 334-337, 1983.
- 31 HUANG, S.; TITUS, S. J; WIENS, D. P. Comparison of nonlinear height diameter functions for major Alberta tree species. Can. J. For.Res., Ottawa, v. 22, p. 1297-1304, 1992.
- 32 LARSON, P. R. Stem form development of forest trees. For. Sci. Monogr., Bethesda, n. 5, p. 1-42, 1963.
- 33 LOETSCH, F.; ZÖHRER, F.; HALLER, K. E. Forest inventory. München: BLV. Verlagsgesellchaft, 1973. v.2, 469 p.
- MACHADO, S. A. Studies in growth and yield estimation for Pinus taeda L. plantations in the State of Paraná-Brazil. 1978. 170 f. Dissertation. (Doctor of Philosophy). University of Washington.
- 35 MACHADO, S. A. Estimativa de sobrevivência de *Pinus taeda*L. em plantios homogêneos. <u>Floresta</u>, Curitiba, v. 10,
 n. 1, p. 73-75, 1979.
- MACHADO, S. A. The use of a flexible biological model for basal area growth and yield studies of *Pinus taeda* L.. In: <u>IUFRO</u>. <u>Forest Research Inventory</u>, Growth Models Management Planning and Remot Sensing. Fukuoka, Japan, p. 75-91, 1981.
- 37 MANCINI, L.; SANESI, G.; LASERRE, S. <u>Informe Edafológico</u> de la <u>Provincia de Misiones</u>. <u>Misiones</u>: I.N.T.A Gobierno de la Provincia de Misiones. 1964. 102 p.
- 38 MARIOT, V.; DE DIO, A. Tabla local de volumen para Araucaria angustifolia (Bert.) O. Ktze. en montes implantados en la Provincia de Misiones. In: JORNADAS TECNICAS SOBRE BOSQUES IMPLANTADOS EN EL NOROESTE ARGENTINO (1: 1982: Eldorado). Actas. Eldorado: 1982. p. 25-41.
- 39 MARSH, E. K.; BURGERS, T. F. 1973. The Response of Evenaged Pine Stands to thinning. Forestry in S. Africa, Pretoria, v.14, p. 103-111, 1973.

- 40 MURPHY, P. A.; STERNITZKE, H. S. Growth and yield estimation for loblolly pine in the West Gulf. Res. Pap. SO. USDA. For. Serv., New Orleans, n. 154, p. 1-8, 1979.
- 41 MURPHY, P. A.; BELTZ, R. C. Growth and yield of shortleaf pine in the West Gulf Region. Res. Pap. SO. USDA. For. Serv., New Orleans, n. 169, p. 1-15, 1981.
- 42 MURPHY, P. A. Merchantable and sawtimber volumes for natural even-aged stands of loblolly pine in the West Gulf Region. Res. Pap. SO. USDA. For.Serv., New Orleans, n. 194, p. 1-38, 1983.
- 43 MURPHY, P. A. A nonlinear timber yield equation system for loblolly pine. Forest Science, Bethesda, v. 29, p. 582 591, 1983.
- 44 PARRESOL, B. R. Baldcypress height-diameter equations and their prediction confidence intervals. Can. J. For. Res., Ottawa, v. 22, p. 1429-34, 1992.
- 45 PIENAAR, L. V. Quantitative theory of forest growth. Washington, 1965. 176 f. Thesis (Doctor of Philosophy). University of Washington.
- 46 PIENAAR, L. V.; TURNBULL, K. J. The Chapman-Richards generalization of Von Bertalanffy's growth model for basal area growth and yield in even-aged stands. For. Sci., Bethesda, v. 19, n. 1, p. 2 22, 1973.
 - 47 PUJATO, J.; MARLATZ, R. M. Datos de crecimiento y producción de *Araucaria angustifolia* (Bert.) O. Ktze. a los 9 años de edad para 10 espaciamientos iniciales diferentes. In: CONGRESO DE ATIPCA (19.:1983: Buenos Aires). Informe Preliminar. Buenos Aires, 1983. p. 25-41.
- 48 RICHARDS, F. J. A flexible growth function for empirical use. <u>Journal of Experimental Botany</u>, London, v.10, n. 29, p. 290-300, 1959.
- 49 REUKEMA, D. L.; BRUCE. D. Effects of thinnings on yield of Douglas fir. USDA. Forest Serv. Pacific Northwest Forest and Range Experimental Station. General Technical Report. PNW. USDA. For. Serv., Portland, n. 58, p. 36, 1977.
- SANQUETTA, C. R. <u>Predição da sobrevivência em reflorestamentos de Pinus elliottii Engelm</u>. Curitiba, 1990. 81 f. Dissertação (Mestrado em Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná.

- 51 SCHÖNAU, A. P. G. Effect of site quality and initial stocking density on average diameter in black wattle plantations in Kenya. <u>Forest Sci.</u>, Bethesda, v. 21, p. 2-9, 1975.
- 52 SCOLFORO, J. R. S.; GLADE J. E. Modelos de crescimento e produção. <u>Tópico especial</u>. Curitiba (Engenharia Florestal) Setor de Ciências Agrárias, Universidade Federal do Paraná, 1987. 116 p.
- 53 SCOLFORO, J. R. S.; MACHADO, S. A. Curvas de indice de sítio para *Pinus elliottii* no Estado do Paraná e Santa Catarina. <u>Floresta</u>, Curitiba, v.18, n.1-2, p. 140-158, 1988a.
- 54 SCOLFORO, J. R. S.; MACHADO, S. A. Curvas de indice de sítio para *Pinus taeda* no Estado do Paraná e Santa Catarina. <u>Floresta</u>, Curitiba, v.18, n.1-2, p. 159-173, 1988b.
- 55 SCOLFORO, J. R. S. <u>Sistema integrado para predição e</u>
 análise presente e futura do crescimento e produção, com
 otimização de remuneração de capitais para *Pinus*caribaea. Curitiba, 1990. 290 f. Tese (Doutorado em
 Engenharia Florestal) Setor de Ciências Agrárias,
 Universidade Federal do Paraná.
- 56 SMALLEY, G. W.; BAILEY, R. L. Yield tables and stand structure for loblolly pine plantations in Tenesee, Alabama and Georgia highlands. Res. Pap. SO. USDA. For. Serv., New Orleans, n. 96, p. 1-81, 1974.
- 57 SOIL SURVEY STAFF. Soil taxonomy. Washington, 1975. 754 p. (Handbook; n. 436).
- 58 SOIL SURVEY STAFF. Keys to soil taxonomy. Washington, 1987. (SMSS Technical Monogr., n. 6).
- 59 SOMERS, G. L. et al. Predicting mortality with a Weibull distribution. For. Sci., Bethesda, v. 26, p. 291-300, 1980.
- 60 SOMERS, G. L.; FARRAR, JR. R. M. Biomathematical growth equations for natural longleaf pine stands. Forest Science, Bethesda, v. 37, n. 1, p. 227-244, 1991.
- 61 SPELTZ, R. M.; ROMERO MONTEIRO, R. F.; CORDEIRO, J. A. Ensaio de espaçamentos de *Araucaria angustifolia* (Bert.) O. Ktze. In: IUFRO MEETING ON FORESTRY PROBLEMS OF GENUS ARAUCARIA (1: 1979: Curitiba). Forestry problems of the genus Araucaria. Curitiba: FUPEF, 1980. p 222-230.

- 62 SPURR, S. H. <u>Forest inventory</u>. New York: The Ronald Press, 1952. 476 p.
- 63 STAGE, A. R. Prediction of height increment for models of forest growth. Res. Pap. (INT). USDA. For. Serv., Ogden, n. 164, p. 1-20, 1975.
- 64 SULLIVAN, A. D.; CLUTTER, J. L. A simultaneous growth and yield model for loblolly pine. <u>Forest Science</u>, Bethesda, v. 18, n.1, p. 76-86, 1972.
- TREVIZOL JÚNIOR, T. L. Análise de um modelo compatível de crescimento e produção em plantações de Eucalyptus grandis (W. Hill ex Maiden). Viçosa, 1985. 74 f. Tese Magister Scientiae) Ciência Florestal, Universidade Federal de Viçosa.