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Summary

In a previous study we introduced structural equation modelling (SEM) for digital soil mapping in the Argentine
Pampas. An attractive property of SEM is that it incorporates pedological knowledge explicitly through a
mathematical implementation of a conceptual model. Many soil processes operate within the soil profile;
therefore, SEM might be suitable for simultaneous prediction of soil properties for multiple soil layers. In this
way, relations between soil properties in different horizons can be included that might result in more consistent
predictions. The objectives of this study were therefore to apply SEM to multi-layer and multivariate soil mapping,
and to test SEM functionality for suggestions to improve the modelling. We applied SEM to model and predict
the lateral and vertical distribution of the cation exchange capacity (CEC), organic carbon (OC) and clay content
of three major soil horizons, A, B and C, for a 23 000-km2 region in the Argentine Pampas. We developed a
conceptual model based on pedological hypotheses. Next, we derived a mathematical model and calibrated it with
environmental covariates and soil data from 320 soil profiles. Cross-validation of predicted soil properties showed
that SEM explained only marginally more of the variance than a linear regression model. However, assessment
of the covariation showed that SEM reproduces the covariance between variables much more accurately than
linear regression. We concluded that SEM can be used to predict several soil properties in multiple layers by
considering the interrelations between soil properties and layers.

Highlights

• We tested structural equation modelling (SEM) for multi-layer and multivariate soil mapping.
• SEM models soil property covariation better than multiple linear regression.
• The SEM re-specification step improves prediction accuracy.
• SEM supports learning about soil processes from data.

Introduction

Many environmental and agro-economic activities require accurate
information about the spatial distribution of soil types and prop-
erties. This information is being generated increasingly through
digital soil mapping (DSM) techniques (Minasny & McBratney,
2016). They are largely data driven and make use of empirically
established relations between soil and landscape properties and
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exploit spatial correlation in soil properties. Soil properties are typi-
cally modelled and predicted individually, and for different horizons
or depth layers separately. This might result in unrealistic or incon-
sistent predictions because interrelations between soil properties are
not taken into account. For example, if soil organic carbon (SOC)
is predicted layer by layer, the resulting predicted SOC profiles
might be physically unrealistic. If SOC and soil organic nitrogen
are predicted separately, the resulting maps might produce implau-
sible C:N ratios (Heuvelink et al., 2016). Although the accuracy of
the individual maps might be acceptable, the consistency of the
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predictions between several soil properties and between layers
might fail to meet required standards and possibly impair subse-
quent analyses.

The problem of inconsistency between multiple spatial predic-
tions is not new to soil science or to other fields. There are many
techniques that can deal with the simultaneous prediction of several
dependent variables, such as cokriging (Webster & Oliver, 2007),
factorial kriging (Goovaerts, 1992) and regression-cokriging (Orton
et al., 2014; Heuvelink et al., 2016). These geostatistical methods
model the spatial interrelations explicitly among several soil proper-
ties, but the modelling becomes cumbersome as the number of vari-
ables increases. Multivariate linear regression, partial least squares
regression and multivariate machine-learning algorithms have also
been used to predict multiple dependent variables simultaneously
(e.g. Viscarra Rossel et al., 2006; Xu et al., 2013). These methods
are useful for predicting many dependent variables simultaneously,
but they are empirical and lead to complex models that are difficult
to interpret. As a result they cannot be used easily for extrapolation
and provide little insight into cause and effect relations.

Mechanistic models also predict multiple soil and landscape
properties simultaneously (Opolot et al., 2015; Temme & Vanwal-
leghem, 2015). Their advantage is that they are based on mechanis-
tic principles, which fosters extrapolation and aids understanding of
physical, chemical and biological processes. These dynamic models
are unfortunately often very complex. Apart from large uncertain-
ties in the model inputs and parameters, model structural uncer-
tainty can also be large.

Recently, we proposed structural equation modelling (SEM)
as a compromise between empirical and mechanistic approaches
for soil spatial prediction (Angelini et al., 2016). It is designed
specifically for modelling cause and effect interrelations and can
include dependencies between dependent variables (Bollen, 1989).
It has been applied extensively in ecology (Grace et al., 2012). It
can be considered a semi-mechanistic approach because the starting
point of model formulation is a mechanistic conceptual model,
although calibration relies predominately on empirical approaches
and the model cannot describe dynamic processes explicitly (Grace
et al., 2012). In our previous study (Angelini et al., 2016), we
demonstrated that it is possible to include interrelations between
soil properties in the modelling process. In a case study we made
2-D predictions for an area in the Argentine Pampas with SEM. In
addition, SEM also seems suitable for multiple layer soil prediction
because it can represent vertical processes through implementation
of a conceptual model, and relations between soil properties at
different depths or horizons can be included. Angelini et al. (2016)
did not explore more advanced SEM techniques that can improve
model performance, one of which is that SEM can be used in an
exploratory way to detect additional relations that could be included
in the conceptual model (Grace et al., 2012). This might improve the
predictive power and help to increase understanding of the system
and develop new theories.

The objectives of this study were to apply SEM for multi-layer
and multivariate soil mapping and test the functionality of SEM for
suggested model improvement. We apply SEM to model and predict

the cation exchange capacity, organic carbon and clay content of
three major soil horizons, A, B and C, in an area of the Argentine
Pampas. We validate the resulting maps with cross-validation of the
prediction accuracy and the accuracy with which the covariation
among different soil properties and among the same soil property
for different layers is represented.

Materials and methods

Study area

The study area covers about 23 000 km2 in the Argentine Pampas
between 35∘00′–33∘17′W and 58∘55′–61∘21′S (Figure 1). Before
cultivation this was a grassland plains region formed by aeolian
sediments consisting of loess and loess-like materials. The main
soil types are Typic and Vertic Argiudolls (Phaeozems in WRB
classification, IUSS Working Group WRB, 2015) in association
with soil that has natric horizons (Solonetz in Soil Taxonomy
and WRB) (Morrás & Moretti, 2016). In spite of its apparent
homogeneity, the loess is derived from several sources that affect
the soil chemical and physical properties (Morrás & Moretti, 2016).

Annual precipitation ranges between 900 and 1000 mm. Rain
is deficient in the summer and in excess in winter. The average
summer temperature is 23∘C and the average temperature in winter
is 10∘C. Under this climate, land use has changed from native
grassland to mainly arable land in the past century.

Soil data

The region was surveyed during the 1960s and 1970s. Data were
extracted from 344 profiles of the soil information system of the
Argentine National Institute of Agricultural Technology (INTA).
Figure 1 shows the sampling locations.

We selected three soil properties, percentage of soil organic
carbon (OC mass percentage), clay content (mass percentage) and
cation exchange capacity (CEC in cmolc kg−1 soil), which we model
for three major soil horizons: A, B and C. The original soil horizons
were grouped as follows.

• A horizon: A1 and Ap or any subdivision of these (e.g. Ap1,
Ap2).

• B horizon: B2, Bt, Bn or any subdivision of these.
• C horizon: usually represented as C, C2, R or X.

We did not include transitional horizons, such as AB, BA or
BC. Figure 2 shows the frequency of occurrence of the horizons
and the distribution of the soil properties down the profile. Note
that most A horizons occur above 50-cm depth, whereas the C
horizon generally starts at 100-cm depth or deeper. Figure 3 shows
the correlations among soil properties and horizons. More detailed
information about the soil data is provided in Angelini et al. (2016).

External factors

Table 1 summarizes the external factors used in the modelling pro-
cess. The main sources of information included the following. The
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Figure 1 Extent of the study area and locations of
soil profiles used for calibration and cross-validation.

Figure 2 Graphs of the median of cation exchange
capacity (CEC), organic carbon (OC) and clay
(Clay), as a function of depth; the grey area repre-
sents the 50% envelope between the 25th and 75th
quantiles. Frequency of occurrence of each horizon
type as a function of depth (Horizons).

Shuttle Radar Topography Mission (SRTM) digital elevation model
(DEM) was pre-processed to reduce artefacts and striping noise,
and then used to derive the external terrain factors listed in Table 1.

Enhanced vegetation index (EVI [MOD13Q1]) and land-surface
temperature and emissivity (LST [MOD11A2]) were taken from
MODIS (moderate-resolution imaging spectroradiometer; the
MOD13Q1, MCD43A4 and MOD11A2 were retrieved from the
online Reverb/ECHO tool [http://reverb.echo.nasa.gov/reverb/],
courtesy of the NASA EOSDIS Land Processes Distributed Active
Archive Center [LP DAAC], USGS/Earth Resources Observation
and Science [EROS] Center, Sioux Falls, South Dakota, USA.
https://lpdaac.usgs.gov/citing_our_data#sthash.yGKPuOqi.dpuf).
The standard deviation of a 15-year monthly time series from
March 2000 to December 2014 was calculated per pixel for EVI,

which represents land cover dynamics. The mean value of LST was
computed for the same period as an indicator of mean soil temper-
ature, which depends on soil texture, among other factors. We also
computed the normalized difference of water index (NDWI) from
MODIS MCD43A4 (Poggio et al., 2013) by averaging time-series
imagery for the periods 17 January to 26 February (late summer)
and 8 October to 11 November (mid-spring) 2000–2015. These two
periods were selected because of the large contrast in vegetation
intensity between them. The NDWI represents seasonal vegetation
dynamics of arable land and lowland. Finally, we generated an
image of distance to the Paraná River, which can be considered to
represent parent material (Morrás & Moretti, 2016).

All variables were standardized by subtracting their mean and
dividing by their standard deviation.
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Figure 3 Correlation graph of soil properties by horizons. The upper right triangle shows the correlation between properties, the diagonal presents the histogram
of the properties and the lower left triangle the scatter plots. Soil properties are abbreviated such that the name of the soil property is followed by the horizon
name and separated by a dot, so that Clay.A represents the clay percentage in horizon A, Clay.B is the clay percentage in horizon B, and so on. OC is organic
carbon and CEC is cation exchange capacity.

Modelling framework for structural equation

To formulate, apply and evaluate an SE model we divided the
modelling process into seven steps (Figure 4).

1 Conceptual model: a conceptual model identifies the mecha-
nistic processes that explain the functioning of a system. Its
development means it is necessary to consider the (hypothesized)
physical, chemical and biological laws that define the system.
One has to link concepts to system variables and explain the main
relations among these.

2 Graphical model: the conceptual model becomes more specific
in a graphical model that defines the type of variables included,
such as observed, latent or composite variables (Grace et al.,
2012). Arrows have to be identified that represent cause and
effect relations between the variables.

3 Mathematical model: the mathematical model automatically fol-
lows from the graphical model. It includes three basic equations
(Bollen, 1989):

x = 𝚲𝛏 + 𝛅, (1)

y = K𝛈 + 𝛜, (2)

𝛈 = B𝛈 + 𝚪𝛏 + 𝛇, (3)

where x is a vector of q observed exogenous variables (i.e.
external factors), y is a vector of p observed endogenous variables
(i.e. soil properties), 𝛏 and 𝛈 are vectors of n latent exogenous
and m endogenous variables, 𝚲 and K are q× n and p×m
coefficient matrices that link observed to latent variables, 𝛅 and
𝛜 are vectors of measurement errors of length q and p,
respectively (mutually independent and zero-mean normal
deviates), B and 𝚪 are m×m and m× n coefficient matrices of
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Table 1 External factors

Factor Description Source Resolution

LSTM Mean of 14 years of daytime 8-day land-surface temperature Terra/MODIS, product MOD11A2 1 km
EVISD Standard deviation of 14 years of enhanced vegetation index (EVI) for 16 days Terra/MODIS, product MOD13Q1 250 m
NDWI.A Normalized difference water index (NDWI) bands NIR (∼850 nm) and SWIR

(∼1240 nm). Summer season
MODIS product MCD43A4 500 m

NDWI.B Normalized difference water index (NDWI) bands NIR (∼850 nm) and SWIR
(∼1240 nm). Spring season

MODIS product MCD43A4 500 m

DEM Altitude (metres) SRTM 30 m
VDCHN Vertical distance to channel network (metres) SRTM 30 m
TWI Terrain wetness index SRTM 30 m
RIVER Distance to Paraná River (metres) – 30 m
LAT Latitude of plain coordinates (metres) – 30 m
LON Longitude of plain coordinates (metres) – 30 m
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Figure 4 Steps in structural equation modelling (SEM) for spatial prediction of soil properties.

endogenous and exogenous relations and 𝛇 is vector of length m
of model error for variable 𝛈 (Grace et al., 2012). Note that the
diagonal elements of B are forced to zero so that soil properties
cannot depend on themselves. Equations (1) and (2) define the
measurement model, whereas Equation (3) corresponds to the
structural model. Three more terms complete the mathematical
model, 𝚿 is the m×m variance–covariance matrix of 𝛇, the
off-diagonal elements of which represent relations between latent
endogenous variables that cannot be explained by other means.
The terms 𝚯𝛅 and 𝚯𝛜 are q× q and p× p variance–covariance
matrices of 𝛅 and 𝛜.

4 Model calibration and evaluation: these comprise a comparison
of the variance–covariance matrix of the data, denoted by
S, with the model-implied variance–covariance matrix 𝚺(𝛉),
which is written as a function of 𝛉, where 𝛉 represents all
model parameters (B, 𝚪, K, 𝚲, 𝚿, 𝚯𝛅 and 𝚯𝛜). The model
parameters are generally estimated by maximum likelihood
(ML). Model evaluation also includes a close examination of
estimated coefficients to determine whether their signs are

coherent with the conceptual model and their magnitude agrees
with what might rationally be expected (Bollen, 1989).

5 Model respecification: conceptual models typically do not take
into account all relations of complex systems such as the soil sys-
tem. Models are kept deliberately simple, and knowledge about
system functioning is often limited. There could also be alter-
native conceptual models. For these reasons, conceptual models
might be misspecified. Misspecification might be detected partly
by SEM, requiring a modification of the model.

6 Spatial prediction: prediction in classical SEM applications
refers to predicting the scores of the latent variables (Rosseel,
2012). Here we are interested in using the calibrated equations to
predict the dependent variables from the measured independent
variables. The solution is derived from Equations (1) and (3)
(Angelini et al., 2016):

�̂� = (I − B)−1 𝚪𝚲−1x. (4)

Note that the dependent variables are predicted from independent
variables only, even though they depend on other dependent

© 2017 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 68, 575–591



580 M. E. Angelini et al.

variables. The prediction error variance can also be computed
(Angelini et al., 2016).

7 Model accuracy and covariation assessment: in this final step
the prediction maps are evaluated in terms of their accuracy and
covariation among predicted soil properties.

In this study, we applied the seven steps above to model and
predict the cation exchange capacity (CEC) and its two main
controlling factors, soil organic carbon (OC) and clay content. Most
of the steps above have been explained in detail in Angelini et al.
(2016), except for steps 4, 5 and 7. These are given in more detail
below.

Model calibration and evaluation

Measures of overall fit aim to assess the validity of the calibrated
model. There is not a single measure, however, that can assess the
model-fitting completely and for this reason several statistics have
been developed (Kline, 2015). Most overall fitting measures are
based on a comparison of the sample variance–covariance matrix
S and the model-implied variance–covariance matrix 𝚺(𝛉). Matrix
S is computed directly from the observations of the endogenous
variables, whereas 𝚺(𝛉) follows from Equations (1) to (4):

𝚺 (𝛉) = (I − B)−1 ((𝚪𝚽𝚪T +𝚿
) (

(I − B)−1)T +𝚯𝛜 , (5)

where 𝚽 is the n× n variance–covariance matrix of 𝛏, computed
from the observations of exogenous variables. Note that use of 𝚽
effectively means that the exogenous variables are treated as random
effects in Equation (3). This is required because variation in the
exogenous variables is also incorporated in the calculation of S. It
must then also be included in 𝚺(𝛉) to make the comparison valid.
Note also that we made the simplifying assumptions 𝚲=K= I and
𝚯𝛅 = 0. Note that the latter assumption implies that the vector of
covariates x becomes deterministic. These assumptions apply to
our soil mapping example, but the methodology also applies more
generally (e.g. Bollen, 1989, Chapter 4).

The simplest way to assess overall model performance would be
by computing the difference between S and 𝚺(𝛉). The standardized
root mean-square residual (SRMR) is the standardized average of
the absolute differences between S and 𝚺(𝛉), which operates on
the correlation matrices instead of the covariance matrices (Kline,
2015). Another measure that is frequently used is goodness of fit
(GFI), which is analogous to the coefficient of determination used in
linear regression. It measures the amount of variance and covariance
in the data that is explained by the model (Jöreskog & Sörbom,
1981; Bollen, 1989).

Model validity measures are also often used in SEM, such as the
comparative fit index (CFI), among others. The CFI was developed
by Bentler (1990) to estimate the overall model fit when the sample
size is small. This index compares the chi-square (𝜒2) value of the
model with the 𝜒2 value of a so-called baseline model. The baseline
is the simplest model, where B and 𝚪 are zero (no cause and effect

relations), there are no latent variables and correlation between
observed variables is zero. The diagonal matrix 𝚽 (variance of x)
contains free parameters only. The CFI measures how much better
the selected model is than the baseline model, where zero means
no improvement and one means a perfect fit. The SEM literature
suggests a CFI cut-off value of 0.95, although it is case dependent
(Marsh et al., 2004). In addition to these measures, we computed
the model R2.

Model respecification

Often, our knowledge about system functioning is limited, or the
variables that we wish to observe are difficult to measure, such
as soil-forming process variables for which we often have only
proxies. Lack of knowledge on soil-forming processes means that
we might not know which cause and effect relations to include
in the graphical model. Misspecification of a model might result
from inclusion or exclusion of relations in a model. Respecifica-
tion, or modification of the model, might solve this problem by a
knowledge-based and or empirical approach (Bollen, 1989). The
first develops alternative approaches that conform to our knowl-
edge, whereas the second uses algorithms to obtain ‘suggestions’
that may help to improve the model. Here we focus on the empirical
approach, also referred to as exploratory analysis in SEM literature.

Exploratory analysis involves adding or removing a new parame-
ter (new relation between two properties), and subsequently check-
ing whether this improves test statistics for model fitting. This stage
has been automated in SEM modelling using different tests such as
the Lagrange multiplier (Bentler, 1990), a 𝜒2-test with one degree
of freedom. This test estimates how much 𝜒2 decreases if one of
the model restrictions is released (i.e. if a relation not yet part of
the model is included) (Kline, 2015). The test reports a modifica-
tion index (MI) for every possible parameter (arrow in the graphical
model) that can be added to the model, analogous to the approach
used in stepwise regression. In this study we checked for modifica-
tions in B,𝚪 and𝚿 only (i.e. which endogenous variables depend on
other endogenous and exogenous variables) and on the covariance
of system noise between endogenous variables.

Model accuracy and assessment of covariation

In Angelini et al. (2016), we determined the accuracy of the indi-
vidual soil maps through common measures. Covariation among
predicted variables, which measures how correlations between
dependent variables are reproduced by the model, is not taken into
consideration by these conventional accuracy metrics. Although
some studies have addressed the issue (e.g. Orton et al., 2014), mod-
els with multivariate outcomes in DSM have not used covariation
in this way.

We assess accuracy by leave-one-out cross-validation, in which
the model parameters were re-estimated each time. We quantified
prediction bias with the mean error (ME) and overall accuracy
with the root mean squared error (RMSE). The prediction power
was estimated by the amount of variance explained (AVE), also
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known as the Nash–Sutcliffe efficiency (Krause et al., 2005). It is
defined as:

AVE = 1 −
∑n

i

(
yi − ŷi

)2

∑n
i

(
yi − y

)2
, (6)

where yi is the i-th measurement of the target variable, ŷi is the
corresponding predicted value, y is the mean and n is the number
of observations.

We compute the mean and median standardized squared predic-
tion error proposed by Lark (2000) as an indicator of correct assess-
ment of map uncertainty. Apart from these measures, we computed
a measure for the preservation of the relations among soil properties.
Following the rationale of SEM, we compare the correlation matrix
of measured soil properties with the predicted correlation matrix.
These matrices are standardized versions of the observation covari-
ance matrix S and the model-induced covariance matrix 𝚺(𝛉). From
their difference, a correlation difference matrix can be obtained. The
SRMR measure may then be used as a summary measure of how
well covariation is reproduced in the model predictions.

For comparison, we also fitted multiple linear regression (MLR)
models to predict OC, clay content and CEC for the three horizons
individually with the same covariates as used in SEM. For these
models we computed the cross-validation statistics and assessed the
preservation of covariation through the standardized 𝚺(𝛉)MLR. We
compared this with the correlation matrix of the observations and
computed the SRMRMLR.

Results

Conceptual model

Cation exchange capacity is determined by the sum of the CEC of
each individual colloid in the soil. Sources of colloids in the soil are
clay and humus particles. The smaller is the particle, the larger is
its surface to adsorb cations (Brady & Weil, 2013).

The soil of the study area has small amounts of OC: 1–3% in A
horizons and typically less than 1% in B and C horizons (Figure 2).
The amount of OC in the C horizon can be considered negligible and
therefore we assume that it does not affect the CEC in this horizon.

One of the main causes of soil spatial variation in the study
area is parent material. Particle-size distribution shows a coarse
to fine gradient from southwest to northeast. The loess deposits
have been reworked by aeolian and fluvial processes (Morrás
& Moretti, 2016). Rain and subsequent water infiltration caused
argilluviation, which is considered one of the dominant and most
extensive soil-forming processes in the area. Consequently, the B
horizons generally have more clay than A and C horizons (Figure 2).
Areas with different patterns of water flow might have different
redistributions of clay in the soil profile. Therefore, the spatial and
vertical distribution of clay content depends mainly on the initial
amount and type of clay in the parent material, the climate and the
relief.

The accumulation of organic matter is another predominant
process in the area; organic carbon accumulates mainly in the top

layer and can be redistributed to deeper layers by eluviation and
pedoturbation. Organic matter accumulation depends on climate
and relief, which control temperature and availability of water, land
cover, which determines organic matter supply, water infiltration,
time and other soil conditions, such as texture and pH (Brady &
Weil, 2013).

Another factor that controls CEC is pH. For reasons of simplicity
we did not consider pH in the conceptual model.

Graphical and mathematical model

The conceptual model, which characterizes the main forces and
processes that control the distribution of CEC, clay and OC, was
transformed into a graphical model (Figure 5). Figure 6 shows
the variables and model coefficients that have to be estimated
from this model. All coefficients are elements of the matrices
involved in the definition of the mathematical model. Let us first
consider the measurement model (Equations (1) and (2)), which
comprises the matrices 𝚲, K, 𝚯𝛅 and 𝚯𝛜. We assumed that the
external factors are observed deterministic variables; therefore, 𝚲
is an identity matrix and 𝚯𝛅 is zero. As a result, 𝛏 is equal to
x. The matrix K is also an identity matrix because we assume
direct measurement of each soil property, involving only random
measurement errors characterized by 𝚯𝛜. The diagonal elements of
𝚯𝛜 comprise the (known) measurement error variances of each soil
property determined with data from an inter-laboratory comparison
study (WEPAL, 2015).

Second, the structural model (Equation (3)) is defined by 𝚪, B
and 𝚿. The elements of these matrices have a non-zero value only
if there are corresponding arrows in the graphical model. Thus, we
obtain:

𝚪 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾11 𝛾12 0 𝛾14 0 0 0 0 0 0
𝛾21 𝛾22 𝛾23 0 0 𝛾26 0 0 0 0
0 𝛾32 0 0 0 0 0 0 0 0
𝛾41 0 0 𝛾44 0 0 0 0 0 0
0 0 0 𝛾54 𝛾55 𝛾56 𝛾57 0 𝛾59 0
0 0 0 0 0 𝛾66 𝛾67 𝛾68 𝛾69 𝛾610

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 𝛽14 0 0 0 0 0
𝛽21 0 0 0 𝛽25 0 0 0 0
0 𝛽32 0 0 0 0 0 0 0
0 0 0 0 0 𝛽46 0 0 0
0 0 0 𝛽54 0 𝛽56 0 0 0
0 0 0 0 0 0 0 0 0
𝛽71 0 0 𝛽74 0 0 0 0 0
0 𝛽82 0 0 𝛽85 0 0 0 0
0 0 0 0 0 𝛽96 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)
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Figure 5 Graphical model. Grey continuous
lines represent the theoretical relation between
soil-forming factors and external factors. Black
continuous arrows are cause and effect links.
Black dashed arrows are expected correlations
between system errors. External factors are
described in Table 1. Soil system variables
are abbreviated such that the name of the soil
property is followed by the horizon name and
separated by a dot, so that Clay.A represents
the clay percentage in horizon A, Clay.B is the
clay percentage in horizon B, and so on. OC
is organic carbon and CEC is cation exchange
capacity.

𝚿 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓11 0 0 0 0 0 0 0 0
0 𝜓22 0 0 0 0 0 0 0
0 0 𝜓33 0 0 0 0 0 0
0 0 0 𝜓44 0 0 0 0 0
0 0 0 0 𝜓55 0 0 0 0
0 0 0 0 0 𝜓66 0 0 0
0 0 0 0 0 0 𝜓77 𝜓78 𝜓79

0 0 0 0 0 0 𝜓87 𝜓88 𝜓89

0 0 0 0 0 0 𝜓97 𝜓98 𝜓99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

For example, 𝛾12 refers to the arrow in Figure 6 that models the
effect of external factor 𝜉2 (the standard deviation of the enhanced
vegetation index, EVISD) to 𝜂1 (the organic carbon of horizon A,
OC.Ar), and 𝛽54 represents the effect of 𝜂4 (the clay percentage
of horizon A, Clay.Ar) to 𝜂5 (the clay percentage of horizon B,
Clay.Br). (Letter ‘r’ at the end of variable names refers to the true
value of soil properties (e.g. OC.A is the observed organic carbon
of the A horizon, OC.Ar is the true (‘real’) OC of the A horizon).)
Matrix 𝚿 has the variances of the structural errors on its diagonal,
and allows for non-zero covariance between the CEC structural
errors. It is a symmetric matrix (i.e. Ψij =Ψji for all i and j).

Model calibration and evaluation

The model was fitted with the lavaan package (Rosseel, 2012).
After calibration, the measures of model fit were CFI= 0.92,
SRMR= 0.043 and GFI= 0.93 (Table 2, step 0). The CFI and P val-
ues suggest that there might be some important relations that have

not been considered in the model specification. Therefore, we anal-
ysed the coefficients and carried out an exploratory respecification
analysis that provides suggestions of what can be included in the
model.

Model respecification

The first modification of the original model was based on the
analysis of its parameters. The coefficient 𝛾82 (which linked OC.Br
to CEC.Br in Figure 6) was negative. We forced it to be positive, but
because this caused convergence problems we decided to remove
this link. Next, Clay.Cr and Clay.Br were affected by LAT (𝛾69,
𝛾59). We expected a positive effect of LAT (latitude) on both soil
properties, but because of interaction between LON (longitude) and
RIVER (distance to the Paraná River), the coefficients were positive
in one link and negative in another. We decided to remove these also
(even though they were significant) and replace them with an effect
of RIVER on soil properties (𝛾67, 𝛾57). After these modifications,
we obtained new measures of model fit (Table 2, step 1).

Next, we applied an exploratory analysis to respecify the model.
We checked suggestions for additional links between external
factors and both clay and OC (𝛾 coefficients) with MI, which is a
univariate test, and new links have to be included one by one. Table 3
lists the first group of suggestions that were included (step 2).
These modifications improved all measures (Table 2, step 2). There
were additional relations between soil properties and also several
proposed links between CEC and external factors (of all three
horizons). Although we know that these are not direct cause and
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Figure 6 Graphical model with parameters.
Thick continuous arrows represent B and 𝚪
matrices, thin continuous arrows represent K,
𝚿 and 𝚯𝛜 matrices, and dashed double-headed
arrows represent the model error correlations.
External factors (grey boxes) are described in
Table 1. Soil system variables (coloured boxes)
are abbreviated such that the name of the soil
property is followed by the horizon name and
separated by a dot, so that Clay.A represents
the clay percentage in horizon A, Clay.B is the
clay percentage in horizon B, and so on. OC
is organic carbon and CEC is cation exchange
capacity. Letter ‘r’ at the end of variable
names refers to the true value of soil properties
(e.g. OC.A is the observed organic carbon of the
A horizon; OC.Ar is the true (‘real’) OC of the
A horizon).

Table 2 Changes in model-fitting measures after every respecification step

Step 𝜒2 d.f. P-value CFI GFI SRMR

0 228.4 91 <0.000 0.916 0.926 0.043
1 239.5 94 <0.000 0.911 0.924 0.040
2 183.1 86 <0.000 0.941 0.942 0.035
3 127.3 81 0.001 0.972 0.960 0.030
4 90.9 77 0.133 0.992 0.971 0.024

d.f., degrees of freedom; CFI, comparative fit index; GFI, goodness of fit;
SRMR, standardized root mean-square residual.

effect relations, they might be caused by intermediate soil properties
that were not included in the system, such as pH. Therefore, we
decided to include these suggestions (step 3, Table 3). The measures
of fit show a large improvement with CFI and GFI close to one
(Table 2, step 3).

Finally, we included suggestions for the residual
variance–covariance (Table 3, step 4, operator ‘∼∼’) between
soil properties because we know that there may be correlation
among these that was not identified by the cause and effect rela-
tions. Note that the CEC of the A horizon has a positive residual
covariance with clay of the B and C horizons, which means that
large (small) residuals in CEC.Ar also tend to have large (small)
residuals in Clay.Br and Clay.Cr. This might be caused by hidden
factors, such as pH and parent material. A similar effect occurs
between OC and clay of the C horizon. In this case, depth of the

C horizon could account for correlations between the residual
errors because it has larger (smaller) clay and OC contents when
the upper boundary is closer to (further from) the soil surface.
The last modification of the respecification step is to include the
residual covariance between CEC of the C horizon and clay of the
A horizon, which could also be related to parent material. After
this, the measures of fit were acceptable, and we continued with
this model (Table 2, step 4).

The respecified model was fitted by maximum likelihood esti-
mation. The resulting graphical model with parameter estimates is
shown in Figure 7. Note that NDWI.B and TWI have a small effect
only on soil properties, whereas other external factors such as lati-
tude, longitude, distance to the river and the digital elevation model
have a strong effect. It is notable that the relations between clay
at different horizons, although significant, are not very strong. The
relation between OC of the A and B horizons is also very weak,
which does not conform to the conceptual model. The main con-
tributors to CEC of the A horizon are clay and OC, whereas CEC
of the B and C horizons is primarily governed by clay.

Spatial prediction

Figure 8 shows maps of all soil properties for all horizons. The CEC
maps of the B and C horizons have a similar pattern that is affected
by proximity to the Paraná River (northeast boundary), which was
used to represent parent material. The same pattern also occurs in
the maps of clay, which was expected because of the strong relation
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Table 3 List of suggestions given by lavaan package

Step Variable Operator Variable MI

2 OC.Ar ∼ LAT 9.09
Clay.Ar ∼ LON 7.66
OC.Ar ∼ DEM 6.89
Clay.Br ∼ LON 5.39
Clay.Br ∼ DEM 9.65
Clay.Br ∼ LSTM 5.58
OC.Br ∼ LON 5.26
OC.Ar ∼ RIVER 5.55

3 CEC.Cr ∼ RIVER 30.25
CEC.Br ∼ NDWI.A 9.85
CEC.Cr ∼ LON 4.81
Clay.Cr ∼ NDWI.A 3.50
Clay.Cr ∼ EVISD 7.50

4 CEC.Ar ∼∼ Clay.Br 9.47
CEC.Ar ∼∼ Clay.Cr 8.07
OC.Cr ∼∼ Clay.Cr 10.49
CEC.Cr ∼∼ Clay.Ar 5.87

Step refers to the steps followed in the respecification process (Results
Section, Model respecification). Variable can be either a soil property or an
external factor. Operator refers to which kind of relation links the variables
(∼ ‘regressed on’, ∼∼ ‘correlated with’). MI is the modification index
provided by lavaan. Soil system variables are abbreviated such that the name
of the soil property is followed by the horizon name and separated by a dot,
so that Clay.A represents the observed clay percentage in horizon A, Clay.B
is the observed clay percentage in horizon B, and so on. OC is organic carbon
and CEC is cation exchange capacity. Letter ‘r’ at the end of variable names
refers to the true value of soil properties (e.g. OC.A is the observed organic
carbon of the A horizon, OC.Ar is the true (‘real’) OC of the A horizon).

between clay and CEC expressed in the SE model. Figure 8 shows
clearly that the vertical variation in OC is much greater than the
lateral variation. The OC contents in B and C horizons are very
small and almost constant.

Model accuracy and assessment of covariation

Table 4 shows the measures of accuracy derived with
cross-validation, and R2 of the fit of the SEM model. The AVE
values show that the model explains a large proportion of the lateral
and vertical variation in soil properties. For OC the AVE is 91%, for
clay it is 72% and for CEC it is 53%. The AVE decreases when it is
calculated per horizon. The AVE for OC is small for all horizons.
Clay of the A horizon also has a small AVE value, which explains
the poor prediction of the CEC. The AVE for clay of the B and C
horizons is relatively large, and so is that for CEC. Figure 9 shows
scatter plots of predicted against observed values for the three soil
properties, by horizon and for the joint horizons. Results confirm
the AVE statistics in Table 4. The MLR gives cross-validation
statistics that are similar to those of SEM. The model R2 of MLR
is slightly larger than that of SEM, whereas AVE, which is based
on cross-validation, is slightly larger for SEM.

The ME (Table 4) shows that SEM and MLR predictions are unbi-
ased. Prediction error variances of both models give an adequate

measure of the uncertainty for most soil properties; the standardized
squared prediction error has a mean close to 1, although their medi-
ans have slightly smaller values than the theoretical value 0.455.
The RMSE shows that prediction accuracy decreases with depth
for CEC and clay, which have maximum values of 5.5 cmolc kg-1

for CEC.C and almost 7% for Clay.C.
Figure 10 shows the S, 𝚺(𝛉) and 𝚺(𝛉)MLR matrices, which are the

standardized variance–covariance matrices of the data, SEM and
MLR. Darker colours represent stronger correlations between pairs
of soil properties, or between the same soil property at different
horizons. It shows clearly that SEM reproduces interrelations more
accurately than MLR because similarities are larger between 𝚺(𝛉)
and S than between 𝚺(𝛉)MLR and S. Figure 11 shows the absolute
values of S− 𝚺(𝛉) and S−𝚺(𝛉)MLR, which confirms this result.
Improved performance of SEM is also confirmed by the SRMR,
which is 0.024 for SEM (Table 2), whereas SRMRMLR is 0.065.
All values of the SEM difference matrix are smaller than 0.1,
whereas elements of the MLR difference matrix are up to four times
larger. For example, covariation between CEC.A and OC.A is not
represented adequately by MLR, whereas in SEM it matches the
observed covariation much better.

Discussion

The conceptual soil-landscape model

The fitted graphical model in Figure 7 has several implications for
the conceptual model. First, it confirms that CEC depends mainly on
clay and OC. We also found, however, smaller effects from external
factors. This might indicate that another soil property controls CEC
that is affected by external factors. For example, Morrás & Moretti
(2016) showed that the parent material of this study area varies in
its granulometry and mineralogy; the clay mineralogy governs CEC
and might be affected by other external factors. We can only assume
this relation because we lack a map of soil mineralogy. Second,
we decided to remove the relation between OC.B and CEC.B after
examining the model parameters, although we know that there is
a link between them. In this case, however, clay content of the B
horizon is so large in parts of the study area that the effect of OC on
CEC becomes negligible. Third, Figure 7 also shows that relations
between the A and B horizons are not as strong as we would have
expected because the coefficients of OC and clay that connect these
two horizons are small. This corroborates Iriondo & Kröhling’s
(2004) hypothesis, which states that the top horizon of the soil in the
study area has another parent material (San Guillermo Formation),
namely an aeolian sediment layer of 15–35 cm.

Finally, we observe that there is no direct causality between
the CEC of different horizons even when these may be strongly
correlated. This is because CEC is a property of the colloidal
fraction, which is not affected by the CEC of another layer. For
example, CEC of horizon A could be correlated with that of horizon
B because they share the same parent material; therefore, they have
a similar colloidal fraction.

Figure 7 shows that NDWI of spring (NDWI.B) and TWI have
a small effect on soil properties, which means that either their
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Figure 7 Final graphical fitted model. Arrow thickness represents the magnitude of coefficients and their colour is the sign. Black arrows represent elements
of K, 𝚿 and 𝚯𝛜 matrices. Dashed arrows represent model error correlations. Bold italic numbers are significant estimates (P-value< 0.05), bold non-italic
numbers are fixed coefficients and non-bold non-italic numbers are non-significant estimates. Note that all variables were standardized prior to modelling.

information is redundant or they do not represent the soil-forming
factors accurately. This is in contrast to the results of Poggio et al.
(2013) where NDWI predicted organic matter well. Figure 7 also
helps to identify key external factors that have strong predictive
power for several soil properties, such as DEM, distance to the
Paraná River (representing parent material) and standard deviation
of EVI. Incorporating the temporal variation of remote sensing data
can increase the resolution of these factors and further increase their
predictive power (Samuel-Rosa et al., 2015).

The maps show that the spatial patterns of A-horizon properties
differ from those of the B and C horizons. This can be explained by

different SEM relations between soil properties and external factors
for the A, B and C horizons. It confirms that factors that represent
different soil-forming factors differ between horizons.

Model respecification

The model evaluation and respecification steps are the most subjec-
tive of an SEM procedure. The main criterion for deciding to modify
the model is the lack of fit assessed by different measures (Grace
et al., 2012). There is, however, no complete agreement about the
cut-off value of these measures because they are case dependent
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Figure 8 Maps of (a) cation exchange capacity (CEC) (cmolc kg-1), (b) organic carbon (OC) (mass %) and (c) clay (mass %) for the A, B and C horizons.

(Marsh et al., 2004). Kline (2015) remarked that exploratory anal-
ysis may mislead respecification or that it does not help to find
the ‘truth’. Most SEM applications rarely aim to predict dependent
variables as we do in DSM. To achieve greater prediction accu-
racy, exploratory analysis might identify relevant relations between
external factors and soil properties. Although prediction may be
improved with exploratory analysis, it should be carried out pru-
dently and with pedological mechanisms in mind.

The question arises as to how far one should go with model
respecification. The exploratory analysis can include suggestions
until the model fits the data (almost) perfectly, but this does
not ensure an improvement in predictive power. It would require

independent model validation, which for SEM means applying the
fitted model to another independent dataset to prevent over-fitting of
the model (Bollen, 1989). We used cross-validation for this without
using the observation that was put aside.

Representing soil information with SEM

The resulting SEM graph (Figure 7) in combination with the maps
(Figure 8) is a novel way to represent soil information. They show
how soil properties and soil layers are interconnected and the effect
on their spatial patterns. For example, the similarity in the spatial
patterns of clay and CEC of the B horizon can be explained from
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Table 4 Cross-validation and measures of model fit

Soil property ME RMSE Mean SSPE Median SSPE AVE R2

SEM
CEC / cmolc kg-1 −0.004 4.30 – – 0.53 –
OC / g 100 g-1 0 0.25 – – 0.91 –
Clay / g 100 g −0.007 5.45 – – 0.72 –
CEC A hor. / cmolc kg-1 0.002 3.16 1.03 0.40 0.18 0.21
CEC B hor. / cmolc kg-1 −0.009 3.00 1.05 0.39 0.50 0.52
CEC C hor. / cmolc kg-1 −0.008 5.46 0.97 0.23 0.45 0.47
OC A hor. / g 100 g-1 0 0.40 1.07 0.38 0.24 0.27
OC B hor. / g 100 g-1 0 0.14 1.06 0.33 0.03 0.06
OC C hor. / g 100 g-1 0 0.06 1.02 0.37 0.02 0.03
Clay A hor. / g 100 g-1 0 4.05 1.03 0.30 0.15 0.18
Clay B hor. / g 100 g-1 −0.013 5.14 0.99 0.40 0.60 0.62
Clay C hor. / g 100 g-1 −0.013 6.87 1.05 0.53 0.41 0.44

MLR
CEC A hor. / cmolc kg-1 0.006 3.23 1.05 0.38 0.14 0.21
CEC B hor. / cmolc kg-1 −0.009 4.04 1.06 0.36 0.49 0.53
CEC C hor. / cmolc kg-1 −0.003 5.48 1.03 0.24 0.45 0.49
OC A hor. / g 100 g-1 0 0.41 1.05 0.42 0.22 0.28
OC B hor. / g 100 g-1 0 0.14 1.04 0.35 0.00 0.08
OC C hor. / g 100 g-1 0 0.06 1.05 0.35 −0.05 0.04
Clay A hor. / g 100 g-1 0.007 4.17 1.07 0.31 0.10 0.19
Clay B hor. / g 100 g-1 −0.010 5.21 1.05 0.41 0.59 0.63
Clay C hor. / g 100 g-1 −0.011 6.90 1.04 0.52 0.40 0.45

Mean error (ME), root mean squared error (RMSE), mean and median of the standardized squared prediction error (SSPE) and amount of variance explained
(AVE); R2 is the coefficient of determination of the model fit. OC, organic carbon; CEC, cation exchange capacity; hor., horizon.

the fat arrow between these properties in Figure 7. This indicates
that CEC depends strongly on clay content, even in the A horizon
where clay (0.87) has twice as large an effect as that of OC (0.42)
(recall that all variables were standardized prior to modelling, which
means that coefficients can be compared directly).

Model accuracy

The maps of clay and consequently CEC from B and C horizons
are reasonably accurate (Table 4 and Figure 9). The maps of OC
of the B and C horizons show little spatial variation (Figure 8) and
have poor accuracy (Table 4). The latter might be caused by the
lack of spatial variation, the small amount of OC in these horizons
and relatively large measurement error (Figure 7). Organic carbon
and clay of horizon A are poorly predicted, which might be related
to the hypothesis that the A horizon is a young sediment (Iriondo
& Kröhling, 2004). In general, landscape properties can explain
variation in soil properties of the top layers with greater accuracy
than for deeper layers (e.g. Kempen et al., 2011). In our case it is
the other way around for clay and CEC. This could be caused by
either a lack of informative covariates or a parent material that is
much younger than the subsurface horizons.

Cross-validation results in large AVE values when the three
horizons are considered together (Table 4 and Figure 9). More than
91% of the variance in OC was explained by the SE model, 72% for
clay and 53% for CEC. This may seem impressive, but this result

must be put into perspective. If we used the horizon means only
as predictors, about 88% of the variance in the OC data would be
explained, 47% of the variance in clay and 15% of the variance in
CEC. This confirms that lateral variation of these properties in the
study area is much smaller than the vertical variation.

When SEM is compared with multiple linear regression (MLR),
R2 is slightly larger for MLR than SEM (Table 4). This was expected
because SEM uses only relations (58 free parameters) that make
sense from a pedological point of view, whereas MLR uses all
the predictive power in covariates (99 free parameters), regardless
of whether the predictive relations make sense pedologically. The
AVE based on cross-validation shows that SEM performed slightly
better than MLR, which might result from over-fitting of the MLR
model. The differences between AVE and R2 are smaller for SEM
than MLR.

Spatial auto- and cross-correlation is not taken into account in
SEM by default. The model error (𝛇) is assumed independent.
Residuals of spatial models, however, might have spatial correlation
and taking this into account could help improve predictions (Lamb
et al., 2014) for the same reason that regression kriging can outper-
form regression (Hengl et al., 2004). Lamb et al. (2014) developed
a tool to incorporate the spatial autocorrelation among variables in
SEM. To determine if our model results could be improved further
by taking spatial autocorrelation into account, we fitted variograms
(Webster & Oliver, 2007) to the SEM cross-validation residuals
(Figure 12). They show that spatial correlation in the residuals of
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Figure 9 Scatter plots of measured against observed soil properties obtained by cross-validation. Columns of graphs are soil properties: cation exchange
capacity (CEC), organic carbon (OC) and clay. Rows of graphs are horizons A, B and C, and ‘Joint h.’ represents the three horizons joined.

the C-horizon CEC and clay content is moderate and weak in the
residuals of the A-horizon clay content. This suggests that there
might be room for improvement; therefore, we intend to extend
the application of SEM for DSM by taking spatial correlation into
account in future.

The SE model reproduced the covariation between soil properties
much better than MLR. We compared SEM with MLR because
MLR combined with kriging (i.e. regression-kriging) is commonly
used in DSM. However, the covariation can also be reproduced
by multivariate linear regression (MvLR) (Fox & Weisberg, 2010),
which quantifies the cross-correlations between residuals of the
linear regressions for each soil property. We fitted an MvLR
model to our data with the same covariates that were used for

SEM. Assessment of covariation showed that MvLR reproduces
the cross-correlations between soil properties perfectly, even better
than SEM. This is not surprising because unlike SEM, MvLR
puts no restrictions on the residual variance–covariance matrix.
All elements can deviate from zero and a perfect reproduction of
the cross-correlations can be achieved. An MvLR model is rarely
fitted in practice; this approach adds many extra parameters that
need to be estimated. In our case, with nine soil properties, the
MvLR model would involve 9× (9− 1)/2= 36 extra covariance
parameters. With SEM we included only three extra covariance
parameters and could reproduce the covariation well. Note that
assessment of the covariation was based on the same data that were
used to calibrate the models. This might have biased the results
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Figure 10 Correlation matrix of observations (Observed), derived from the structural equation (SE) model (SEM) and with multiple linear regression (MLR).

Figure 11 Absolute difference between corre-
lation matrix of original data and structural
equation modelling (SEM – Observed) and
multiple linear regression (MLR – Observed).

Figure 12 Experimental (dots) and fitted (solid line) variograms of cross-validation residuals of cation exchange capacity (CEC), organic carbon (OC) and
clay. Red lines and dots represent the A horizon, green the B horizon and blue the C horizon.
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and we should probably have split the dataset into calibration and
validation datasets. Reproduction of covariation would probably
deteriorate, but less so for SEM than for MvLR.

Conclusions

We have shown how to develop a conceptual model for several soil
properties at multiple horizons and how to convert it into a graphical
and mathematical model with SEM. We improved model fitting
through model respecification and showed how to assess covariation
of modelled soil properties.

We conclude that:

• SEM is a useful tool to predict several soil properties simul-
taneously for multiple horizons while maintaining covaria-
tion between soil properties and horizons. Model respecifi-
cation helps to improve model accuracy and to learn from
the data through suggestions that can improve the conceptual
soil-landscape model.

• CEC depends largely on clay percentage and less on OC, and so
does its prediction.

• SEM graphs in combination with soil maps provide insight
into interrelations between soil properties and identify important
sources of information that could be used to improve models in
future studies.

• A simple method to assess covariation among soil properties
could be applied to any DSM approach.

• Prediction of soil properties with separate multiple linear regres-
sion models causes inconsistencies between predictions of a soil
property. Covariation assessment should be included in mod-
elling that predicts several soil properties or properties at multiple
depths.
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