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Abstract: The utilization of genotyping has gained significant popularity in tree improvement
programs, aiding in enhancing the precision of breeding values, removing pedigree errors, the
assessment of genetic diversity, and evaluating pollen contamination. Our study explores the impact
of utilizing 5308 SNP markers to genotype seed orchard parents (166), progeny in progeny trials
(667), and seedlot orchard seedlings (780), to simultaneously enhance variance components, breeding
values, genetic diversity estimates, and pollen flow in the Region I white spruce (Picea glauca)
breeding program in central Alberta (Canada). We compared different individual tree mixed models,
including pedigree-based (ABLUP), genomic-based (GBLUP), and single-step pedigree-genomic-
based (ssGBLUP) models, to estimate variance components and predict breeding values for the
height and diameter at breast height traits. The highest heritability estimates were achieved using the
ssGBLUP approach, resulting in improved breeding value accuracy compared to the ABLUP and
GBLUP models for the studied growth traits. In the six orchard seedlots tested, the genetic diversity
of the seedlings remained stable, characterized by an average of approximately 2.00 alleles per SNP, a
Shannon Index of approximately 0.44, and an expected and observed heterozygosity of approximately
0.29. The pedigree reconstruction of seed orchard seedlings successfully identified consistent parental
contributions and equal genotype contributions in different years. Pollen contamination levels varied
between 11% and 70% using SNP markers and 8% to 81% using pollen traps, with traps both over-
and under-estimating contamination. Overall, integrating genomic information from parents and
offspring empowers forest geneticists and breeders in the Region I white spruce breeding program
to correct errors, conduct backward and forward selections with greater precision, gain a deeper
understanding of the orchard’s genetic structure, select superior seedlots, and accurately estimate the
genetic worth of each orchard lot, which can ultimately result in increased and more precise estimates
of genetic gain in the studied growth traits.

Keywords: molecular markers; Picea glauca; tree breeding; effective population size; pollen flow

1. Introduction

Genotyping is an increasingly popular tool in tree improvement programs and can
be used for several purposes, including the improvement of breeding values, providing
accurate estimates of genetic diversity and pollen contamination, correcting pedigree errors,
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and advancing approaches such as genome-wide association studies (GWAS) [1] and
genomic selection (GS) [2].

Breeding values (BVs) have traditionally been calculated by measuring trees in progeny
trials to rank parents and offspring in a tree improvement program. This approach is
conducted using an individual tree (animal) model [3] and the pedigree-based additive
relationship matrix (A-matrix) [4], generating the so-called Pedigree Best Linear Unbiased
Predictors (ABLUP). However, the incorporation of genomic information in quantitative ge-
netics analyses has shown significant improvements in the estimated genetic parameters [5]
and predicted BV accuracies of individuals and parents [6], especially in open-pollinated
(OP) families [7].

In recent years, the Genomic Best Linear Unbiased Predictors (GBLUP) approach,
through the incorporation of the marker-based realized kinship matrix (G-matrix) [8]
computed from genotyped individuals, has been improved using the single-step GBLUP
(ssGBLUP) method [9–11]. This single-step method has demonstrated its usefulness in
predicting BVs through the simultaneous use of phenotypes, genotypes, and pedigree
from the entire breeding program, providing better estimates than the ABLUP method.
The ssGBLUP method has also been used in the GS of forest trees, demonstrating its
effectiveness in improving the precision of estimated genetic parameters and the accuracy
of predicted BVs. This improvement in precision is particularly evident in traits with low
heritability and during the early stages of a breeding program [12–15] but also in large-scale
breeding programs, characterized by complex pedigrees spanning multiple generations
and extensive datasets [16]. In an open-pollinated population of Picea glauca (Moench) Voss,
Ratcliffe (2017) [14] showed the effectiveness of ssGBLUP in reducing the known bias in
heritability estimates and significantly improving the breeding value prediction accuracy.

The incorporation of genomic information can also play a key role in optimizing the
delivery side of tree improvements, as seed orchards are essential to produce genetically
improved seedlings in tree breeding programs [17]. The estimation of genetic diversity
and pollen contamination of seed orchard seedlots has been traditionally conducted by
phenotypically measuring cones and pollen in the orchards [18]. However, this method has
some limitations, such as high labor requirements and the inability to accurately estimate
pollen flow between natural populations and orchards [2]. Isoenzymes were the first
genetic markers used to estimate pollen contamination in seed orchards [19]. Currently,
SNP markers are superior to other DNA makers due to their stability, repeatability, ease
of use, considerably low mutation rates and high-throughput genotyping, and can be
found in all regions of a genome [20]. Recently, SNP genotyping was employed to obtain
the genomic profiles of trees in a white spruce orchard (parents/founders), trees from
progeny trials, and seedlings from orchard seedlots, allowing tree improvement programs
to accurately measure the genetic diversity (effective population size, Ne) and pollen flow
between natural populations and orchards (pollen contamination) [2]. The results showed
that severe roguing led to a decrease in Ne and an increase in coancestry and that pollen
contamination from an unconsidered source (adjacent seed orchard one km away) had an
unanticipated impact on genetic diversity.

To date, only a few tree improvement programs have genotyped parents in the orchard,
offspring in progeny trials, and orchard seedlots, and none have used this approach simulta-
neously to enhance variance components and breeding values while also assessing genetic
diversity and pollen flow. Therefore, the objectives of this study were as follows: (1) to
compare the variance components and theoretical accuracies of BVs for two growth traits
(height and diameter) using genomic (GBLUP), pedigree-based (ABLUP), and combined
pedigree and genomic-based (ssGBLUP) approaches; and (2) to estimate genetic diver-
sity parameters, parental assignment, and pollen contamination levels using the genomic
profiles of samples from the Alberta Region I white spruce breeding program.
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2. Materials and Methods
2.1. Study Area

The Region I white spruce Controlled Parentage Program (CPP) began in 1986 in
central Alberta, Canada, and is owned and managed by four forest companies. Three
hundred and sixty first-generation parent tree selections were made between 1994 and 1999.
Progeny trials were established (named G354 by the Government of Alberta) in 2001 on
five sites (A, B, C, D, E) with eight replications and 18 blocks per replication, following
an alpha design with four tree row plots. Each progeny trial was installed with a total of
306 seedlots, representing 260 seedlots from Alberta, 31 seedlots from British Columbia,
Ottawa, and Manitoba, and 15 checklots. From the five progeny trials, we chose the G354 E
test site at Linaria (54◦12′23′′ N, 114◦8′40′′ W, 630 m.a.s.l), which has the highest survival
and the easiest access compared to other test sites. The clonal seed orchard (G333) was
established with 2088 ramets in 1998, with grafts collected from the original 174 parent
tree selections from wild stands. The orchard occupies 3.78 hectares (210 m × 180 m) with
2100 planting positions arranged in 35 rows and 60 positions and 6 m of spacing between
rows and 3 m between trees within a row/position. The seed orchard is located near
Grande Prairie, Alberta (55◦3′46′′ N, 119◦17′40.9986′′ W, 705 m.a.s.l). Based on the 2013
(age 14) progeny trial measurements, 41 clones were rogued in 2015, leaving 1575 ramets
from 133 clones. The first operational cone crop was collected in 2005, with an average
production of 13,400 seeds/tree/year (2005 to 2016). Pollen contamination was monitored
using a minimum of two wind vane-type pollen traps in the orchard and two external pollen
traps outside the orchard. The G333 orchard is located approximately 1.0 km to the west of
another white spruce seed orchard (G351), with a southwesterly prevailing wind direction
during pollination in that area; therefore, pollen contamination between G351 and G333 is
possible but is expected to be low against the prevailing wind direction. The Government
of Alberta assigned a genetic gain of 2.0% in height (4% volume) at rotation (~100 yrs) in
the seed orchard in 2016 based on the parent tree selection method employed [21]. The
Government of Alberta manages a white spruce clone bank (G218) established in 1981 near
Smoky Lake, Alberta, Canada (54◦03′01′′ N, 112◦09′50′′ W, 623 m.a.s.l.) with clones from
various white spruce breeding programs, including Region I. This clone bank facility allows
for additional scion collections from parent tree selections, research and DNA sampling,
and breeding.

2.2. Needle Collection and DNA Extraction

A random sample of 200 open-pollinated (OP) G333 orchard seeds was obtained
from each of the six-bulk orchard seedlots from 2007, 2009, 2010, 2011, 2013, and 2015
(Figure 1). These seedlots were sown and grown in a greenhouse at the University of
Alberta for four months (January–April 2021). In the last week of April 2021, needles from
120 seedlings were collected for each of the five seedlots (2007, 2010, 2011, 2013, and 2015)
and from 180 seedlings for the 2009 seedlot, resulting in a total of 780 seedling samples. In
May 2021, current-year needles were also sampled from 166 founders (cloned wild parent
selections) located at the G218 clone bank in Smoky Lake. The 166 founders were part
of the initial 174 clones used to establish the original G333 seed orchard and replicated
within the G218 clone bank. From the total of 306 families represented in the progeny trials,
we selected the top 70 families using the ABLUPs estimated for the height measured in
2013 (age 14) to help the industry advance in the breeding program with the best families,
generating genomic information from these (Figure 1). In June and July 2021, current-year
needles were sampled from the top 70 OP families, corresponding to 667 progeny trees
from the G354 E progeny trial (Linaria), with approximately 10 progenies sampled per
family. From the 70 selected and genotyped families, 42 of the parent trees were sampled
in the 166 G218 clone bank collection (Figure 1). We used pole pruners and scissors for
the needle collections at the field sites. The needle tissue was placed in pre-labeled plastic
bags and then stored in a field cooler at approximately 4 ◦C using ice packs. All samples
were returned to the University of Alberta within two days of collection and stored at
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−20 ◦C until DNA was extracted at the Molecular Biology Service Unit (MBSU) at the
University of Alberta, Canada, using the DNeasy Plant Kit (Qiagen, Mississauga, ON,
Canada) and quantified using a Nano-Drop N-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). DNA concentrations ranged between 50 and 100 ng/µL
with a total volume of 25 µL in each sample. DNA samples were normalized to 400 ng per
well before the SNP genotyping.

Forests 2023, 14, x FOR PEER REVIEW 4 of 19 

in the 166 G218 clone bank collection (Figure 1). We used pole pruners and scissors for the 

needle collections at the field sites. The needle tissue was placed in pre-labeled plastic bags 

and then stored in a field cooler at approximately 4 °C using ice packs. All samples were 

returned to the University of Alberta within two days of collection and stored at −20 °C 

until DNA was extracted at the Molecular Biology Service Unit (MBSU) at the University 

of Alberta, Canada, using the DNeasy Plant Kit (Qiagen, Mississauga, ON, Canada) and 

quantified using a Nano-Drop N-1000 spectrophotometer (Thermo Fisher Scientific, Wal-

tham, MA, USA). DNA concentrations ranged between 50 and 100 ng/µL with a total vol-

ume of 25 µL in each sample. DNA samples were normalized to 400 ng per well before 

the SNP genotyping. 

Figure 1. Schematic sampling design of the Region I tree improvement program in Alberta including 

the number of trees genotyped, and analysis workflow resulting in four best linear unbiased pre-

dictions (BLUP), pollen contamination estimates and effective population size calculations. The 

years for each population’s establishment are included. The site selected among the five progeny 

trials for the genotyping is underlined and bold (E) in the figure. The ssGBLUP and ssGBLUP* in-

cluded 42 and 166 parents in the estimation of the different genetic components, respectively (please 

see Section 2). 

Figure 1. Schematic sampling design of the Region I tree improvement program in Alberta including
the number of trees genotyped, and analysis workflow resulting in four best linear unbiased predic-
tions (BLUP), pollen contamination estimates and effective population size calculations. The years for
each population’s establishment are included. The site selected among the five progeny trials for the
genotyping is underlined and bold (E) in the figure. The ssGBLUP and ssGBLUP* included 42 and
166 parents in the estimation of the different genetic components, respectively (please see Section 2).
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2.3. SNP Genotyping

A total of 1613 DNA samples (from 166 parents, 667 progeny, 780 seedlot seedlings)
were genotyped using an Infinium iSelect SNP array (Illumina, San Diego, CA, USA)
(Figure 1). The SNP array consisted of 5308 biallelic SNPs, representing as many distinct
gene loci [22], and was previously used to genotype trees from the Region G1 Alberta
white spruce tree improvement program [2]. Genotyping was conducted by Neogene
Canada (Edmonton, AB, Canada). For the optimal assignment of parents and pollen
contamination evaluation, we discarded, via visual inspection, a total of 480 SNPs, which
were multilocus, paralogs, monomorphic, or presented low signals, using GenomeStudio
2.0 software (Illumina, San Diego, CA, USA). Following this visual inspection, 20 SNPs
showing a minimum allele frequency (MAF) <0.01, an absolute value of |FST| ≥ 0.50
(FST = Fixation Index), or an average call rate of <85%, were eliminated. Next, a total of
4808 valid SNPs had an average call rate per SNP of 99.7%, an average MAF of 0.21, and an
average FST of −0.02. We used all 4808 SNPs to obtain the GBLUP and ssGBLUP values.
Two subsets of 2000 SNPs were randomly selected, showing no differences in their overall
diversity parameters, so we performed the subsequent genetic diversity analyses using
subset 1, following previous studies that were conducted with the same SNP chip [2].

2.4. Variance Components, Theoretical Accuracy, and Breeding Value Predictions

The Government of Alberta provided phenotypic data (height and diameter), with
approval from the owners, of the G354 progeny trial for this study, measured at age 20. To
estimate variance components and predict breeding values for parents and offspring, we
fitted and compared the following animal (individual-tree) genetic mixed models [23] for
height (HT20) and diameter at breast height (DBH20) traits using the conventional pedigree-
based ABLUP model, the standard genomic-based GBLUP model and two versions of the
single-step GBLUP (ssGBLUP) models.

ABLUP:
y = Xβ + Za + e (1)

where y is the vector of phenotypic data; β is the vector of the fixed effect of blocks;
a is the vector of random additive genetic effects (i.e., breeding values) with distribu-
tion a ∼ N(0, Aσ2

a ), where A is the additive relationship matrix [4] from the pedigree
information containing 8658 trial trees (progeny) and their 306 known parents, σ2

a is the
additive genetic variance; and e is the vector of random residual effects with distribution
e ∼ N

(
0, Iσ2

e
)
, where I is the identity matrix, and σ2

e is the residual variance. The incidence
matrices X and Z relate the phenotype y to the effects β and a, respectively.

GBLUP: The model for the classical GBLUP analysis was the same as [1], with the only
difference being that the A-matrix from the pedigree was substituted with the G-matrix
from a total of 709 individuals (667 progeny from 70 OP families of the G354 E progeny
trial and their 42 genotyped parents) and 4808 SNPs. Then, vector a was distributed
a ∼ N

(
0, Gσ2

a
)
, where σ2

a genetic G-matrix were described above.
ssGBLUP: The model for the ssGBLUP method was the same as [1], except that the

A-matrix was substituted for the combined pedigree- and marker-based relationship matrix
(H-matrix) of the same dimension as the pedigree-based matrix. That is, to obtain the
hybrid H-matrix, we blended the G-matrix (667 progeny trees genotyped and 42 parents)
with the A-matrix (8658 progeny trees and 306 parents). Then, vector a was distributed
a ∼ N

(
0, Hσ2

a
)
. The inverse of the relationship matrix combining the pedigree and genomic

information
(
H−1) was derived following Legarra et al. (2009) [24], Misztal et al. (2009) [9];

Aguilar et al. (2010) [25], Christensen and Lund (2010) [10] as follows:

H−1 = A−1 +

[
0 0
0 λ

(
G−1 −A−1

22

) ] (2)
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where λ scales the differences between genomic and pedigree-based information, G−1

is the inverse of the genomic-based relationship matrix, and A−1
22 is the inverse of the

pedigree-based relationship matrix for genotyped individuals (A22). The weighting factor
λ was set to 0.90. The G-matrix was estimated following the first method proposed by
VanRaden (2008) [8]:

G =
WW′

2 ∑k pk(1− pk)
(3)

where W is the centered matrix of SNP covariates, and pk is the current (or observed) allele
frequency of the genotyped trees for marker k. This G-matrix was used to correct errors
in the pedigree, so the pedigree-based ABLUP and pedigree-genomic ssGBLUP analyses
were preformed using the corrected pedigree.

We further evaluated the effect of including the genotyped parents corresponding
to the genotyped offspring (42) and all the genotyped parents from the program (166) on
the genetic parameters and breeding value predictions. Therefore, we generated a second
version of the ssGBLUP analysis (ssGBLUP*). In the ssGBLUP* analysis, we merged the
G-matrix derived from genotyping 667 progeny trees from the G354 E progeny trial and
166 parents from the G218 clone bank with the A-matrix (consisting of 8658 progeny and
306 parents) to obtain the hybrid H-matrix.

The single-trait narrow-sense heritability (ĥ2) was estimated as follows:

ĥ2 =
σ̂2

a
σ̂2

a + σ̂2
e

(4)

where σ̂2
a is the estimated additive genetic variance and σ̂2

e is the estimated residual genetic
variance from the single-trait model (Equation (1)).

The theoretical accuracy of breeding values for the ith tree (Acci) was calculated using
the following expression:

Acci =

√
1−

SE2
i

σ̂2
a (1 + Fi)

(5)

where SEi is the standard error and Fi is the inbreeding coefficient that corresponds to
individual i.

Finally, the Spearman rank correlations were used to evaluate whether the ranking of
predicted breeding values for parents varied among the models.

The A-matrix, G-matrix, and H-matrix were obtained using the ASRgenomics R-
package [26]. The variance components and predicted BVs from the different models
described above were fitted in R (www.r-project.org) with the package ASReml-R 4.2 [27]
using the average information algorithm described by Gilmour (1995) [28]. The estimated
BVs (in centimeters) were transformed to “percentage gain” using the mean of all BVs (as
the baseline for the % gain) and following government policies [21]. Finally, HT20 (% gain)
and DBH20 (% gain) were the units used for the different BVs.

2.5. Genetic Diversity Analysis

The average number of alleles per SNP (A), the Shannon Index (I), expected heterozy-
gosity (He), and observed heterozygosity (Ho) were calculated using the GenAlEx software
v6.5 (Australian National University, Canberra, Australia) [29] and a subset of 2000 SNPs,
following previous studies [2]. The inbreeding coefficient was calculated as Fi = (mean
He −mean Ho)/mean He. The effective population size (Ne) is defined as the census size of
a population of unrelated, non-inbred individuals with equivalent gene diversity, measur-
ing the rate of genetic drift and inbreeding [30]. Effective population size was calculated
using four methods. The first Ne method was based on Ritland (1996) [31], calculated
using the GenAlEx software, and called Ne (Ritland) throughout this study. The second
Ne method was based on Nomura (2008) [32], calculated using the NeEstimator software
v2.1 (Molecular Fisheries Laboratory, Brisbane, Australia) [33], and called Ne (Nomura)

www.r-project.org
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throughout this study. The third Ne method was based on Waples (2006) [34], calculated
using the NeEstimator software v2.1 [33], and called Ne (Waples) throughout this study.
The fourth Ne method was based on cones, calculated following FGRMS (2016) [21] and
Galeano et al. (2021) [18], and called Ne (cones) throughout this study.

2.6. Parental Assignment and Mating Dynamics

The parental assignment of each seedling from the G333 seed orchard was performed
using CERVUS 3.0.7 (Field Genetics Ltd., Edinburgh, United Kingdom) [35], with an
assignment probability of 95%, a genotyping error rate of 0.0001, and 2000 SNPs [2].
CERVUS was run using the “parent pair-sexes unknown” analysis. For each offspring,
parent sex1 (mothers of trees in the seed orchard seedlings) with a positive LOD score was
accepted, and parent sex2 (fathers of trees in the seed orchard seedlings) was confirmed
when the delta score was significant when calculated with a simulation of 10,000 offspring
and assuming that 50% of the candidate parents were sampled. Parental contributions were
obtained for all six years (2007, 2009, 2010, 2011, 2013, 2015), combining all seed orchard
seedlots. The mating dynamics of all six seedlots together and the 42 progeny families from
the seed orchard seedlings were performed based on the number of offspring that each
mother (parent sex1) and father (parent sex2) produced, using an Excel spreadsheet.

2.7. Assessment of Pollen Contamination

The percentage of pollen contamination (pollen from outside the seed orchard) was
estimated using two methods. The first method used pedigree reconstruction based on
2000 SNPs and parental assignment previously obtained with CERVUS: an offspring was
labeled as ‘pollen contamination’ when the delta score was not significant, meaning that a
mismatch occurred between candidate parents. The second method used pollen traps as
follows: where pollen is counted from inside and outside the orchard, using a surrogate
species (e.g., lodgepole pine pollen).

2.8. Correlations for Effective Population Size and Level of Pollen Contamination

Correlation values and matrices were obtained using Pearson’s method for the two
pollen contamination assessments and effective population size (Ne) methods in the Alberta
Region I and Region G1 white spruce seed orchards. Pearson’s correlation (r) coefficients
were estimated in R 4.2.3 (www.r-project.org) and assumed to be significant at p < 0.05.
Plots were fitted using the ggplot2 package in R (www.r-project.org) and Excel.

3. Results
3.1. Variance Components and Predicted Breeding Values

Based on the G-matrix, we performed a pedigree correction of 136 genotyped trees
from the progeny trial, corresponding to 20% of the total number of genotyped progeny
trees (n = 667). We removed 25 trees that were found to be unrelated to the rest of
the genotyped trees and mothers, and 111 trees were reassigned to appropriate moth-
ers (error correction).

Overall, the estimated genetic parameters and predicted BVs improved when imple-
menting ssGBLUP compared to GBLUP and ABLUP evaluation models fitted for both
growth HT20 and DBH20 traits (Table 1). In particular, estimates of residual variance (σ̂2

e )
decreased, and estimates of additive genetic variance (σ̂2

a ) and heritability (ĥ2) increased
using ssGBLUP (Table 1). However, heritability estimates for DBH20 and HT20 with the
ABLUP and ssGBLUP models using all 8974 trees (306 parents and 8658 progenies from the
progeny trial) were considerably higher than those with 709 genotyped trees (42 parents
and 667 progenies from the progeny trial) (Table 1). The average theoretical accuracy of
the breeding values (BVs) (Acc) corresponding to mothers and progeny improved when
using ssGBLUP for both traits (Table 1). In general, ssGBLUP and ssGBLUP* did not show
significant differences in the genetic parameters and accuracy of the BVs (Table 1). The
new ranking (lowest to highest values) for HT20 and DBH20, based on the ssGBLUPs for

www.r-project.org
www.r-project.org
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306 families, helped identify the families with an incorrect ranking from the ABLUP models,
such as XX00955, XX00117, XX00137, XX01239 for HT20, among others (Figure 2), and
XX01120, XX01243, XX00754, XX01268 for DBH20, among others (Figure 3). The Spearman’s
rank correlation coefficients (ρ) were significant and positive between ABLUP and ssGBLUP
values for HT20 (ρ = 0.97) (Figure 2) and DBH20 (ρ = 0.99) (Figure 3), further indicating
that there were fewer differences in rankings for DBH20 between the two methods.

Table 1. Estimates of additive genetic variance (σ̂2
a ), residual variance (σ̂2

e ), heritability estimates (ĥ2),
and the average theoretical accuracy of the breeding values (Acc) for height (HT20) and diameter at
breast height (DBH20) at 20 years old for the Alberta Region I white spruce breeding program across
the 4 genetic models evaluated. ABLUP used the pedigree-based A-matrix, the GBLUP model used
the G-matrix, ssGBLUP used the hybrid H-matrix, which was obtained using 42 genotyped parents,
and ssGBLUP* used the hybrid H-matrix, which was obtained using 166 genotyped parents. The
GBLUP, ABLUP, and ssGBLUP were estimated after performing the 111 pedigree corrections and
25 removals. Standard errors are denoted in parenthesis. The minimum and maximum values of
theoretical accuracies for mother and progeny are denoted in square brackets.

Parameter GBLUP ABLUP ssGBLUP ssGBLUP*

Total No. of parents 42 306 306 306

No. of parents genotyped 42 -- 42 166

No. of progeny 667 8658 8658 8658

Total number 709 8974 8974 8974

HT20

σ̂2
a 1517.8 (1590.4) 6682.6 (481.7) 7015.9 (487.3) 6863.7 (481.5)

σ̂2
e 8077.2 (1264.3) 6703.9 (373.2) 6557.3 (372.2) 6604.9 (368.4)

ĥ2 0.16 (0.16) 0.49 (0.03) 0.52 (0.03) 0.51 (0.03)

Acc mothers 0.43 [0.37–0.51] 0.90 [0.90–0.90] 0.91 [0.72–0.95] 0.91 [0.71–0.95]

Acc progeny 0.39 [0.21–0.47] 0.74 [0.73–0.75] 0.76 [0.74–0.81] 0.75 [0.74–0.80]

DBH20

σ̂2
a 0.48 (0.3) 2.75 (0.2) 2.86 (0.2) 2.78 (0.2)

σ̂2
e 3.67 (0.4) 2.79 (0.2) 2.77 (0.2) 2.79 (0.2)

ĥ2 0.12 (0.07) 0.49 (0.03) 0.51 (0.03) 0.50 (0.03)

Acc mothers 0.55 [0.49–0.58] 0.90 [0.90–0.90] 0.90 [0.72–0.95] 0.91 [0.71–0.95]

Acc progeny 0.42 [0.32–0.49] 0.74 [0.73–0.75] 0.76 [0.74–0.81] 0.75 [0.74–0.80]

3.2. Genetic Diversity in the White Spruce Program

The genetic diversity of the seedlots from the Region I orchard was maintained and
remained stable throughout the years of study (2007 to 2015), with an average number
of alleles per SNP close to 2.0, a Shannon Index (I) of approximately 0.44, and expected
(He) and observed (Ho) heterozygosity values between 0.28 and 0.29 (Table 2). The orchard
seedlots showed no inbreeding, given that Fi was near or below zero (Table 2). The Ne
calculated, using the Ritland, Nomura, and Waples methods (see Section 2), showed similar
tendencies for each population but contrasting numbers among populations (Table 2).

3.3. Pedigree Reconstruction

We performed pedigree reconstruction for the 780 seedlings, with 514 seedlings known
mothers (118) and fathers (109) (Figures 4 and S1) and 266 seedlings with known mothers
and unknown fathers. Known fathers and known mothers showed a similar frequency
in parental contributions across the years, regardless of the number of offspring when
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grouped into classes (Figures 4 and S1). For example, we had a range of 69–76 mothers and
fathers contributing in the 0–5 offspring class and 1–2 mothers and fathers contributing
in the 20–25 offspring class (Figures 4 and S1). Furthermore, known fathers and known
mothers showed equal parental contributions through the different genotypes, with no
more than two seeds per cross for the six years under study, as shown in the results from
the mating dynamics analysis of the Region I white spruce seed orchard (Figure 5).
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Figure 2. Predicted breeding values (BVs) for the 306 open-pollinated families of the Alberta Region
I white spruce breeding program for height at 20 years (HT20). Breeding values (BV) for height at
age 20 (HT20) obtained using the ssGBLUP (black dots) and ABLUP (red dots) models were ordered
from lowest to highest based on the ssGBLUP analysis. Selected families with a different ranking
between ssGBLUP and ABLUP are highlighted in red squares. Spearman’s rank correlation coefficient
(ρ) between analyses is also shown. The estimated breeding values (in centimeters) were transformed
to % gain using the mean of all BVs.

3.4. Pollen Contamination and Genetic Diversity

The levels of pollen contamination were between 11% and 70% (average 31%) among
seedlots using SNPs and between 8% and 81% (average 32%) using pollen traps (Table 2).
We found significant Pearson’s correlations between methods to estimate pollen contami-
nation and Ne in seedlings from the white spruce Region I seed orchard (Figure 6). These
two methods were used to estimate pollen contamination and showed a statistically sig-
nificant Pearson’s correlation (at p < 0.05) for Region I (r = 0.95) (Figure 7). In addition,
pollen contamination showed a strong correlation with Ne (Nomura) for Region I (r = 0.92)
(Figure 8A), while Ne (Ritland) showed a strong correlation with Ne (Nomura) (Figure 8B)
and Ne (Waples) (Figure 8C).
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Figure 3. Predicted breeding values (BVs) for the 306 open-pollinated families of the Alberta Region
I white spruce breeding program for diameter at breast height at 20 years (DBH20). Breeding values
(BV) for the diameter at breast height at age 20 (DBH20) obtained using the ssGBLUP (black dots)
and ABLUP (red dots) models were ordered from lowest to highest based on the ssGBLUP analysis.
Selected families with a different ranking between ssGBLUP and ABLUP are highlighted in red
squares. Spearman’s rank correlation coefficient (ρ) between analyses is also shown. The estimated
breeding values (in centimeters) were transformed to % gain using the mean of all BVs.
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Figure 4. Frequency of parental contributions in the Alberta Region I white spruce G333 seed orchard
based on six years of assessment. Frequency histogram based on 514 seedlings and 166 parents
for the years 2007, 2009, 2010, 2011, 2013, 2015. The graphic includes five class intervals for the
number of offspring (x-axis) and the number of known mothers and known fathers contributing
with offspring (y-axis) as the sum of the frequency across all years. Parents were inferred using the
software CERVUS 3.0.7 (Field Genetics Ltd., Edinburgh, UK).
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Figure 5. Three-dimensional representation of the mating dynamics in the Alberta Region I white
spruce G333 seed orchard based on six years of assessment. Five hundred and fourteen seedlings
and 166 parents for the years 2007, 2009, 2010, 2011, 2013, and 2015 were included in this figure. The
figure includes all known mothers and known fathers contributing to offspring. Each line represents
a full-sib family, represented with a unique color.

Table 2. Genetic diversity parameters across groups (founders, seed orchard seedlots, and progeny
trial trees) in the Alberta Region I white spruce seed orchard, using tree genomic profiles with a
set of 2000 SNPs. S2007 = seedlot from 2007, S2009 = seedlot from 2009, S2010 = seedlot from 2010,
S2011 = seedlot from 2011, S2013 = seedlot from 2013, S2015 = seedlot from 2015, Prog. trial = progeny
trial. A = average number of alleles per SNP, I = Shannon Index, He = expected heterozygosity,
Ho = observed heterozygosity, Fi = inbreeding coefficient, Ne = effective population size calculated
with four different methods (Ritland 1996; Waples 2006; Nomura 2008; FGRMS 2016; see Section 2).
Pollen cont. = pollen contamination calculated using SNPs and traps (see Section 2). SE = standard
error. na = not available.

Parameter Founders S2007 S2009 S2010 S2011 S2013 S2015 Prog. Trial

N 166 120 180 120 120 120 120 667

A
Mean 1.99 1.99 1.99 1.98 1.98 1.99 1.98 2

(SE) (0.001) (0.002) (0.001) (0.004) (0.003) (0.003) (0.004) (0.001)

I
Mean 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.45

(SE) (0.006) (0.006) (0.006) (0.006) (0.006) 0.006) (0.006) (0.006)

He
Mean 0.29 0.28 0.28 0.28 0.28 0.28 0.28 0.29

(SE) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005)
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Table 2. Cont.

Parameter Founders S2007 S2009 S2010 S2011 S2013 S2015 Prog. Trial

Ho
Mean 0.29 0.29 0.29 0.28 0.29 0.28 0.28 0.29

(SE) (0.004) (0.003) (0.004) (0.005) 0.005) (0.005) (0.005) (0.005)

Fi
Mean 0.001 0.007 0.004 −0.003 0.003 0.005 0.012 −0.002

(SE) (0.002) (0.002) (0.002) (0.002) 0.002) (0.002) (0.002) (0.002)

Ne (Ritland) Mean 333.33 108.02 106.75 56.38 90.59 101.97 84.02 301.93

Ne (Nomura)
Mean 180.24 38.9 48.5 11.3 20.2 32.2 19.5 85.21

(SE) (19.36) (5.05) (4.03) (2.06) (3.57) (3.39) (2.93) (10.12)

Ne (Waples) Mean 570.82 209.5 144.4 81.8 161.6 160.4 128.9 358.27

(SE) (126.61) (51.25) (35.79) (20.51) 38.49) (37.98) (29.89) (84.31)

Ne (cones) Mean na 83.9 59.8 59.9 79.9 72.3 28.59 na

Pollen cont. (SNPs) Mean na 45.8% 70.0% 15.0% 10.8% 25.0% 20.0% na

Pollen cont. (traps) Mean na 42.1% 81.0% 23.7% 7.8% 12.3% 25.2% na
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Figure 6. Pearson’s correlation matrices for the different pollen contamination assessments and
effective population size (Ne) methods in the Alberta Region I white spruce seed orchard. Pollen
contamination was estimated using traps (monitors) and SNPs (genomic profiles) (see Section 2).
The Ne methods are Nomura, Ritland, Waples, and cones (Ritland 1996; Waples 2006; Nomura 2008;
FGRMS 2016; see Section 2). The asterisks (*) indicate statistically significant values at p < 0.01, and
the cross (†) indicates statistically significant values at p < 0.05.
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Figure 8. Scatterplots showing linear trend lines, Pearson’s correlations, and p values for the pollen
contamination assessments and Ne using genomic profiles in the Alberta Region I white spruce seed
orchard. (A) Pollen contamination using SNPs vs. Ne (Nomura), (B) Ne (Ritland) vs. Ne (Nomura),
(C) Ne (Ritland) vs. Ne (Waples) (Ritland 1996; Waples 2006; Nomura 2008; see Section 2). The green
dots denote the different seedlot years.

4. Discussion

The consideration of SNP information from parents in seed orchards, offspring in
progeny trials, and seedlings from orchard seedlots in the genetic analysis of Alberta’s
Region I white spruce breeding program provide valuable insights for future management.
By leveraging the power of this genomic information, we were able to improve the estima-
tion of variance components, allowing for more precise and reliable theoretical accuracies
of breeding values (BVs). Simultaneously, the utilization of these SNP markers proved in-
strumental in the thorough evaluation of genetic diversity parameters, parental assignment
accuracy, and estimates of pollen contamination levels. In summary, incorporating genomic
information from both parents and offspring can allow forest geneticists and breeders
to perform backward and forward selections with greater precision and confidence. The
use of genomics tools has also enhanced our understanding of the seed orchard’s genetic
structure, facilitating the selection of better seedlots for deployment and providing a more
accurate estimation of the genetic worth of each orchard lot, ultimately leading to more
accurate and potentially higher estimates of genetic gain.
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4.1. Variance Components, Theoretical Accuracy, and Prediction of Breeding Values

The implementation of ssGBLUP resulted in a slight increase in the heritability esti-
mates for both traits (HT20 and DBH20) analyzed compared to the pedigree-based ABLUP
model, and a significant increase was observed compared to the genomic-based GBLUP
model (Table 1). While the pedigree-based ABLUP approach has been widely used in
tree breeding programs, the pedigree-genomic ssGBLUP estimations allow tree breeders
to accurately rank the families’ performance after correcting the pedigree errors using
the genomic relationship matrix (Figures 2 and 3), even when the ABLUP and ssGBLUP
genetic parameters are similar. The reliability of estimated genetic parameters is crucial for
maximizing and obtaining realistic genetic gain estimates in tree breeding programs [14]
and for breeders to make precise decisions regarding backward and forward selections.
These results are consistent with the findings reported for growth traits in other tree species.
For example, Cappa et al. [13], Thavamanikumar et al. [15], and Thumma et al. [36] ob-
served similar patterns in Eucalyptus, while Ukrainetz and Mansfield [37] studied Pinus
contorta, and Walker et al. [38] focused on Pinus taeda. On the other hand, investigations
conducted on different tree species have also indicated that models incorporating ge-
nomic evaluation methods such as GBLUP or ssGBLUP resulted in comparable or re-
duced heritability estimates compared to models relying solely on pedigree-based infor-
mation (ABLUP) [14,39,40]. Supporting these findings, a metadata analysis conducted by
Beaulieu et al. [5] on conifer and broadleaf tree species showed that estimates obtained
solely from pedigree information (ABLUP) were generally biased upward when compared
to those obtained using GBLUP, though there were exceptions. Consequently, the authors
recommend expanding the use of genomic selection approaches to obtain more accurate
estimates of genetic parameters and gain in tree breeding populations.

The genetic parameters and heritabilities estimated in the genotyped trees in the
current study (GBLUP model) were significantly lower compared to those estimated using
all trees (ABLUP and ssGBLUP models) (Table 1). As shown in studies on Eucalyptus
pellita and Picea glauca by Thavamanikumar et al. [15] and Nadeau [41], respectively, these
differences could be related to the sampling bias caused by small sample sizes.

The incorporation of genomic information using the ssGBLUP approach serves as a
genetic relationship bridge, connecting individuals and parents and facilitating improved
information utilization during the BLUP analysis. This approach results in more reliable
and accurate BVs, increasing the likelihood of correctly ranking selection candidates [12].
Our results consistently demonstrate the enhanced accuracy of predicted BVs for parents
and offspring when employing ssGBLUP compared to both ABLUP and GBLUP approaches
(Table 1). This enhanced accuracy is a direct reflection of observed incremental improve-
ments in heritability estimates, as demonstrated by studies in Eucalyptus [13,15,36] and
Pinus contorta [37]. The observed discrepancies in ranking accuracy between ABLUP and
ssGBLUP further emphasize the need to reassess and update the choice of evaluation mod-
els in breeding programs. While breeding values estimated by both approaches showed
a strong positive Spearman rank correlation in our study, the superiority of ssGBLUP
became evident in identifying families with previously incorrect rankings (Figures 2 and 3).
These findings highlight the potential of ssGBLUP to overcome limitations associated
with traditional ABLUP approaches, warranting further exploration and a more universal
adoption in forest tree breeding programs. Finally, we wanted to evaluate if the small
relatedness among founders and their distant additive relationships could improve the
breeding value calculations (ssGBLUP*) (Figure 1). We found that there was no benefit in
including the additional founders who are not parents of the genotyped offspring (Table 1)
in the analysis.

4.2. Estimation of Genetic Diversity and Pollen Contamination with Appropriate Methods

Although the theory of random mating is usually not applicable in operational plant
breeding [42], the G333 seed orchard under study showed a similar frequency of mothers
and fathers contributing to seed (offspring) production across the years (Figures 4 and S1)
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and a balanced mating dynamic (Figure 5). This result has also been observed in pre-
vious studies, such as in Pinus contorta [43], Platycladus orientalis [44], and Pseudotsuga
menziesii [45]. Although we found consistent parental contributions to seeds produced
by the G333 orchard across the years, other studies in spruce orchards have observed
other trends. Recently, a sitka spruce (Picea sitchensis) seed orchard presented uneven
contributions, and the authors attributed it to poor flowering [46]. In general, estimations
of parental contributions in seed orchards using DNA markers are more precise than cone
counting [18,47,48], which ultimately leads to better estimates of genetic gain. The pollen
contamination values for Region I showed that using pollen traps (8%–81%) can under-
or overestimate pollen contamination. In the Region G1 white spruce improvement pro-
gram, under- and overestimations of pollen contamination using pollen traps (11%–100%)
(Table S1) were also observed [18]. Consequently, exaggerated values at both ends of the
spectrum of pollen contamination levels may affect the calculation of the genetic worth
of seedlots coming from these orchards. Furthermore, using SNPs, significant Pearson
correlations found for Region I were also observed in the Region G1 white spruce program
between pollen contamination and Ne (Figure S2 and Figure S3) [18]. Although all Ne
methods using SNPs were correlated with Region I and Region G1 white spruce programs,
we suggest that tree breeders always use the same method to avoid bias. If counting
cones and using pollen traps continue to be used to assess genetic diversity and pollen
contamination, respectively, in these tree improvement programs, the correlation between
these visual methods and those using genotyping should be verified to corroborate values.
Finally, several studies have stressed the necessity of using SNP markers to ultimately
estimate accurate Ne values [18,49–53].

4.3. Perspectives

This study focused on providing recommendations to our industrial partners regard-
ing the utilization of genomic tools, providing new genomic-estimated BVs, and showing
differences in the estimated levels of pollen contamination using visual versus genomic
approaches through the genotyping of both parents and offspring (progeny trials and
orchard seedlots). The objectives were two-fold as follows: (1) to enhance estimates of
variance components and BV predictions through applying the ssGBLUP approach, and
(2) to improve the assessment of pollen contamination and estimations of effective popula-
tion size in the studied orchard. Furthermore, the matrix of genomic relationships allowed
us to correct pedigree errors, which has been an ongoing problem in many programs
(Tables S2 and S3) and has become a more common practice among forest geneticists in
recent years [22,54]. Overall, this work serves to both illustrate this process and offers
guidance on how to obtain more accurate BV estimates and genetic diversity, facilitating
the calculation of improved and more precise genetic gain for seed orchard seedlots. The
pedigree correction using the G-matrix analysis recognized the misidentified individuals
and was confined to only a few families (17 out of 70) (Table S3). These observations are
of interest to tree breeders because they help plan future activities and allow managers to
know where errors of identification can occur. For future research, we suggest genotyping
more seeds from each seedlot and including additional years of production from Region
I to evaluate if the number of offspring produced per cross could be different than the
parental contributions found in this study. Finally, results from this study could aid in the
effective planning of the next steps in Alberta’s tree improvement programs, encompassing
both backward and forward selections and in the development of new 2nd and potentially
3rd generation orchards.

5. Conclusions

The ssGBLUP approach was successfully implemented in the genetic evaluation of the
white spruce Region I breeding program, leading to improved genetic parameter estimates
and BV predictions for height and diameter at age 20. By utilizing the genomic profiles
of parents and seedling progeny from seed orchard seedlots, we observed consistent and
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stable genetic diversity in the G333 seed orchard over an eight-year period of production.
In addition, the pedigree reconstruction of full-sib families from the G333 orchard seedlings
across the six seedlots under study demonstrated equal contributions of mothers and
fathers within the seed orchard. We also observed strong Pearson correlations between
pollen contamination levels and the effective population size, which were estimated using
molecular markers for Alberta’s white spruce Region I breeding program. This study
encourages forest companies and orchard managers, in Alberta and elsewhere, to continue
leveraging genomic tools to assess genetic diversity, estimate the levels of pollen contamina-
tion, reconstruct pedigrees, provide error correction, and obtain more accurate individual
and parental predictions of BVs through modern approaches such as ssGBLUP.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/f14112212/s1, Figure S1: Maternal and paternal contributions in
the Alberta Region I white spruce seed orchard based on six years of assessment; Figure S2: Pearson’s
correlation matrices for the different pollen contamination assessments and effective population size
(Ne) methods in the Alberta Region G1 white spruce seed orchard; Figure S3: Scatterplots showing
linear trendlines, Pearson’s correlation, and p values for pollen contamination assessments and Ne
using genomic profiles in the Alberta Region G1 white spruce seed orchard; Table S1: Genetic diversity
parameters across seed orchard seedlots in the Alberta Region G1 white spruce seed orchard, using
tree genomic profiles with a set of 2000 SNPs; Table S2: List of individual trees that were unrelated
to any other genotyped tree in the progeny trial and were not part of any family (unrelated to any
mother from the program); Table S3: List of individual trees that had a wrong family assignment.
The diagnosis of these errors was made using the relationship coefficients from the original G-matrix
following their expected values from the pedigree-based A-matrix.
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