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Abstract 
 
Eucalyptus species are strong source of isoprenoid emission. The objective of the present study was to estimate isoprenoid 
emissions from Eucalyptus grandis forest crops in the Entre Rios province in the Mesopotamia region of Argentina. The 
emission rates of isoprene and monoterpenes were measured on individual leaves under; controlled environmental conditions. 
At 30°C and with a PPFD of 1000 μM m-2 s-1 the emission rate of isoprene emission was 12.5 ± 1.9 nM m-2 s-1 and 
monoterpenes 15.1 ± 3.1 nM m-2 s-1. Emission was significantly affected by leaf position and decreased significantly from East 
to West. The most abundant compound emitted was limonene, accounting for between 50 and 68% of the total monoterpene 
emission. The time course of the isoprene emission course showed its strong dependence on light. On sunny days 42% of the 
isoprene emission comes from top of the canopy and only 2% from bottom of the canopy. But on overcast days, the relative 
contribution of diffuse radiation may be larger and can exceed the contribution of direct radiation. A model procedure in a 
Geographic Information System was implemented to estimate isoprene emissions at a regional scale. A forest inventory, data 
from a meteorological station and leaf area indices derived from satellite data served as inputs for the model. For the Entre 
Rios province (78781 km2), the isoprene emission totals up to 39.5 t d-1 on a clear summer day. The methodology applied to 
estimate isoprenoid emissions on a regional scale contributes to the understanding of carbon exchange between biosphere and 
atmosphere. © 2016 Friends Science Publishers 
 
Keywords: Biogenic emission; Isoprenoid; Gas exchange measurements; Eucalyptus grandis; Argentina 
 
Introduction 
 
Terrestrial ecosystems play an important role in carbon 
cycling, and interact in multiple ways with atmospheric 
processes. The emission of volatile organic compounds 
(mainly isoprene and monoterpenes) from terrestrial 
vegetation represents a global input of 1 Pg of carbon into 
the atmosphere (Guenther et al., 2012). Isoprenoids are 
highly reactive and as a consequence significantly affect the 
chemical and physical properties of the atmosphere 
(Chameides et al., 1988; Centritto et al., 2011); through the 
formation of tropospheric O3 and secondary organic 
aerosols, in addition to influencing the lifetime of powerful 
greenhouse gases including methane (Trainer et al., 1987; 
Fuentes et al., 2000; Claeys et al., 2004). 

Isoprene (C5) and monoterpenes (C10) are formed in 
the chloroplast through the methyl erythritol phosphate 
pathway using newly fixed carbon during photosynthesis 
(Brilli et al., 2007; Grote et al., 2014). Experimental 
evidence shows that isoprenoid emission depends upon 

many factors that are likely to be affected by global change 
(Peñuelas and Staudt, 2010; Li and Sharkey, 2013; Grote et 
al., 2014; Sharkey and Monson, 2014): (1) environmental 
conditions that raise emission, such as temperature (Sharkey 
and Loreto, 1993; Fares et al., 2011; Brilli et al., 2013) and 
photosynthetically active radiation (Sharkey and Loreto, 
1993; Loreto and Centritto, 2008); (2) factors that decrease 
emission rates, such as improper spectral composition of the 
light (Pallozzi et al., 2013a, b), abiotic and biotic stresses 
(Brilli et al., 2007; Loreto and Schnitzler, 2010; Niinemets, 
2010; Brilli et al., 2013; Harrison et al., 2013); (3) 
atmosphere concentration of CO2 and O3 (Lerdau, 2007; 
Loreto et al., 2007); (4) plant form, development and 
functional type (Brilli et al., 2013; Harrison et al., 2013; 
Loreto and Fineschi, 2015); and (5) land-use changes 
(Geron et al., 2006; Ciccioli et al., 2014; Sharkey and 
Monson, 2014). Quantitative predictions of global 
isoprenoid emissions to climate change are extremely 
complex due to the multifaceted interactions amongst the 
multiple determinants that control emission rates. 
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Nonetheless, global change is expected to dramatically 
increase the level of isoprenoid emission, mostly through 
the influence of rising temperatures (Peñuelas and Staudt, 
2010; Sharkey and Monson, 2014). 

At present, models estimate that the global emission of 
isoprene, the most abundant VOC, accounts for 
approximately 0.5 Pg C yr-1 (Arneth et al., 2008; Ashworth 
et al., 2013), whereas the annual estimate of monoterpene 
emissions ranges between 0.03 and 0.15 Pg (Ashworth et 
al., 2013). However, scaling up isoprenoid emissions from 
the leaf to larger scale remains a major challenge, as the 
amount and components of isoprenoid emission vary 
geographically depending upon the vegetation type, the 
dominant species and canopy structure (Ashworth et al., 
2013; Guenther, 2013; Grote et al., 2014). Furthermore, 
little information regarding isoprenoid emission in the 
southernmost regions of South America is currently 
available.  

The objective of the present study was therefore to 
estimate isoprenoid emissions from Eucalyptus grandis 
forests in the Entre Rios province. Here we present a case 
study aimed at implementing a methodology for upscaling 
leaf level data to estimate potential emissions at a canopy 
scale. We have focused on isoprene, as unlike 
monoterpenes, isoprene emissions can be modelled with 
relatively high reliability (Arneth et al., 2008). 
Meteorological data and spatial distributed leaf area indices 
derived from data of the Moderate Resolution Imaging 
Spectroradiometer (MODIS) were used to estimate forest 
emissions during the study period by applying 
methodologies described by Müller et al. (2008). 
 
Materials and Methods 
 
Study Area 
 
The Entre Rios province of Argentina occurs between 30.2° 
and 33.8° Southern Latitude and 57.8° and 60.5° Western 
Longitude, with an area of 78781 km2. The climate is 
subtropical; with an average maximum temperature over the 
past 30 years of 32.3°C (January) and 17.9°C (July). The 
mean annual precipitation is 1345 mm, with the maximum 
in April (151 mm) and minimum in July (53 mm). 
Eucalyptus grandis is the most important commercial 
species and most planted tree in the Entre Rios province: E. 
grandis plantations cover nearly 103000 ha (SAyDS, 2007; 
MAGyP - DPF - Area SIG e Inventario Forestal 
2008/2009). The average time when plantation destination is 
wood sawmills is 10‒15 years. One-year old saplings were 
planted in spring of 2002. Measurements were performed on 
eight-year old plants, approximately 24‒25 m in height. The 
forest stand had a density of 1111 trees per ha. 
 
Gas Exchange Measurements 
 
Photosynthesis (An), stomatal conductance (gs), intercellular 
[CO2] (Ci) and isoprenoid emissions were measured in situ 

between 10:00 and 16:00 h. A round portion (6 cm2) of fully 
expanded leaf of E. grandis was clamped in the cuvette of 
the portable IRGA system (LI-6400, Lincoln, Nebraska, 
USA). To measure the basal rate of isoprenoid emissions, 
all gas exchange measurements were made in ambient 
[CO2] (380 PM M-1), at PPFD (photosynthetic photon flux 
density) of 1000 µM m-2 s-1, relative humidity of 50‒55% 
and leaf temperature of 30qC. The measurements were 
made in March 2010 on leaves selected from the centre, east 
and west parts of ten E. grandis trees. 

When An became steady, the chamber outflow was 
disconnected from IRGA and diverted into a silcosteel 
cartridge packed with 200 mg of Tenax (Markes 
International Limited, UK). A volume of 2 L of air was 
pumped through the trap at a rate of 200 mL min-1. The 
cartridges were then analyzed through a thermal desorber 
UNITY (Markes International Limited, UK) by using a gas 
chromatograph (GC-Agilent 6850, Agilent Technologies, 
Wilmington, DE, USA) equipped with a splitless injector 
and a HP-5MS capillary column (30 m in length, 250 Pm 
i.d. and 0.25 Pm film thickness) and coupled with a mass 
selective detector (MS-Agilent 5975C, Agilent 
Technologies, Wilmington, DE, USA). Helium was used as 
a carrier gas. The concentration of each volatile compound 
was calculated by comparison with the peak area of a 
gaseous standard. The GC-MS system was calibrated 
weekly using cylinders with a standard of each detected 
compound (Rivoira, Milan, Italy) and the concentration of 
each volatile compound was calculated by comparison with 
the peak area of the gaseous standard. Different compounds 
were identified via the NIST library provided with the 
GC/MS Chem Station software (Agilent). Gas 
chromatography peak retention time was substantiated by 
analysis of parent ions and main fragments on the spectra. 
Following isoprenoid sampling, measurements of dark 
respiration (Rd) were also made at ambient CO2 
concentration on the same leaves by switching off the light 
in the cuvette and measuring the CO2 emission rate. 
 
Input Data 
 
Meteorological input data for the isoprene emission model 
consisted of global radiation, temperature and relative 
humidity. The data were measured at one of the 
meteorological stations of the Instituto Nacional de 
Tecnología Agropecuaria (INTA), located in Concordia in 
Eastern Entre Rios at a height of 48 m asl (31º 23´ S, 58º 
02´ W). The model calculations were carried out using the 
meteorological values for a day in late summer (March 24, 
2010) with clear sky, a maximum mean hourly global 
radiation level of 888 W m-2, temperatures between 13°C (in 
the early morning) and 30°C (in the late afternoon) and 
values of relative humidity between 26% (in the afternoon) 
and 97% (in the morning). The leaf area indices were taken 
from a NASA MODIS product (http://modis.gsfc.nasa.gov), 
which provides composite images every 8 days, with a 
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spatial resolution of 0.5’ (roughly 1 km). We used LAI data 
from 22 to 29 March 2010 as this covered the measurement 
period. The model calculations were carried out for 70 LAI 
classes, ranging from 0.1 to 7, the highest LAI of the 
MODIS product. Twenty eight percent of LAI values were 
between 1.0 and 2.0, 22% between 2.0 and 3.0 and 29% 
between 6.0 and 7.0. Isoprenoid emissions were calculated 
for all LAI classes (in steps of 0.1) on the grid of leaf area 
indices. The emissions were weighed in each grid cell with 
the portion of area covered by Eucalyptus forests as given 
by the forest inventory. The maps were created with a 
Geographical Information System, ArcGIS (ESRI, 
Redlands, USA), which allows software development with 
Visual Basic to realize the model computations.  
 
Dependence of Isoprene Emissions on Temperature and 
PPFD 
 
The dependence of isoprene emission EISO (nM m-2 s-1) per 
leaf area on temperature and radiation was calculated as 
(European Emission Agency, 2007):  
 

PPFDTSISOISO CCEE �� ,     (1) 
 

Where, EISO,S is isoprene emission at standard 
conditions (leaf temperature TS = 30°C and photosynthetic 
photon flux density active radiation IS = 1000 μM quanta m-2 
s-1), CT and CPPFD are correction factors which take into 
account deviations from standard conditions. For the 
dependence of the emissions on leaf temperature and PPFD 
we used semi-empirical equations recommended by 
Guenther et al. (1993). The correction factor CT describes the 
dependence of the isoprene emission on leaf temperature T:  
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Where, R (= 8.314 J-1 M-1 K-1) is the universal gas 
constant, cT1 (= 95 000 J M-1), cT2 (= 230 000 J M-1) and TM 
(= 314 K) are empirical coefficients and cT3 (= 0.96) assures 
that CT is equal to one at standard temperature (Guenther, 
1997). The correction factor increases with temperature, but 
decreases after a maximum at 39°C. The dependence on 
PPFD is given by:  
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Where, I is PPFD (μM m-2 s-1 per leaf area) and α (= 
0.0027) and cL1 (= 1.066) are empirical coefficients. The 
function is zero at night and reaches its maximum 
asymptotically with increasing radiation. The two 
functions are suitable to describe the isoprene emission 
variation for a number of different plants including 
Eucalyptus (Guenther et al., 1993). 

Leaf Temperature 
 
Leaf temperature was calculated with the leaf energy budget 
of Campbell and Norman (1998) and Monteith and 
Unsworth (2008). The energy budget requires the energy 
absorbed by the leaf, which comprises PPFD, near-infrared 
radiation (NIR) and long-wave radiation from sun, sky and 
soil. The contributions of long-wave radiation from the 
canopy, sky and soil are calculated with the Stefan-
Boltzmann equation (Goudriaan and van Laar, 1994). The 
absorption of short-wave and long-wave radiation depends 
on leaf height in the canopy as described by Wang and 
Leuning’s model (1998). Sky emissivity was calculated 
according to Brunt’s equation (Brunt, 1932), using FAO 
parameterization (FAO, 1990). The energy budget also 
takes into account energy lost through thermal radiation, by 
heat flow due to the difference between the leaf and ambient 
air, and by transpiration. To calculate transpiration the 
measured stomatal conductance (Table 1) was used, and its 
variation in response to PPFD was estimated using a 
rectangular hyperbola (Jarvis, 1976; Baldocchi et al., 1987). 
The energy budget equation is solved by iterative 
application of the Newton-Raphson method (Dai et al., 
2004; Steinbrecher et al., 2009). As the absorbed shortwave 
radiation is different for sunlit and shaded leaves, different 
leaf temperatures were calculated for these leaves. 
 
Canopy Model for Radiation 
 
Because isoprene emission is strongly influenced by 
radiation, a model considering light extinction in the canopy 
was applied to scale up isoprene emissions from leaves to 
the whole canopy. To apply the radiation canopy model, the 
radiation above the canopy has to be subdivided into its 
components, e.g. direct and diffuse radiation. These 
components were estimated on the basis of global radiation 
and solar elevation angle according to the methodology 
described by de Pury and Farquhar (1997). One half of the 
energy flux is assumed to be in the range of the 
photosynthetically active radiation (400 – 700 nm) 
(Monteith and Unsworth, 2008). The direct and the diffuse 
photosynthetically active radiation is then calculated with a 
methodology described by de Pury and Farquhar (1997). To 
convert the energy flux to quantum flux a conversion factor 
of 4.57 μ M quanta J-1 can be applied, for diffuse radiation 
the conversion factor is 4.24 μ M quanta J-1 (McCree, 1972). 
The resultant direct and diffuse PPFD values serve as inputs 
for the canopy model. The radiation canopy model applied 
equations and parameters given by Goudriaan and van Laar 
(1994), de Pury and Farquhar (1997), Campbell and 
Norman (1998) and Friend (2001) to compute the radiation 
absorbed by sunlit and shaded leaves in the canopy. The 
radiation absorbed by shaded leaves takes into account 
diffuse radiation as well as scattered radiation. The radiation 
absorbed by sunlit leaves takes into account the additional 
direct irradiation from the sun. 
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Canopy Model for Biogenic Emissions 
 
The output of the canopy model for radiation are the sunlit 
and shaded absorbed PPFD values, Isun and Isha, at the depth 
of the canopy corresponding to the cumulated leaf area 
index L downwards from the top of the canopy. Canopy 
isoprene emission, EISO

cpy, is then calculated with equation 
(1), which is integrated over the cumulated leaf area index L 
downwards from the top of the canopy:  
 

� � � �³³ ��� 
LAI

shashashaISO

LAI

sunsunsunISO
cpy
ISO dLfITEdLfITEE

00

,,
 (5) 

 

The first and the second summand on the right side of 
this equation represent isoprene emission by the sunlit and 
shaded portions of the canopy, respectively. The variables 
fsun and fsha are the fractions of sunlit and shaded leaves at 
the canopy depth corresponding to the cumulated leaf area 
index L, which adopts values between the integral limits L = 
0 and L = LAI, whereas LAI is the leaf area index of the 
canopy. The integrals were computed numerically using the 
Newton-Cotes method (Törnig, 1979). For the 
application of this method seven values of the integrand 
were calculated for different values of the cumulated 
leaf area index L. The values of the integrand are then 
multiplied with coefficients given by the Newton-Cotes 
method and summed up. The method was checked with test 
functions and exhibited a very high accuracy with 
integration errors of less than 1%. 
 
Model Procedure 
 
The model procedure (Fig. 1) is carried out for LAI values 
up to LAI = 7. For each LAI value emission values for 
sunlit and shaded leaves at seven different canopy heights 
are used to calculate the whole canopy emission by 
integration. The model procedure is carried for a whole 
day in time steps of one hour. The daily emission of 
isoprene is spatially distributed corresponding to the 
MODIS LAI and the occurrence of Eucalyptus in the forest 
inventory. 
 
Results 
 
Gas Exchange Measurements 
 
There were significant differences in gas-exchange 
parameters among leaf location (Table 1). Photosynthesis 
was significantly higher in leaves to the east and centre of 
the tree than of west. Stomatal conductance was not 
statistically different between the central and west leaves, 
but significantly increased in the east leaves. The 
different dynamics of An and gs resulted in a 
significantly higher An in east than central leaves, while 
no differences were detected between east and west 
leaves. There were no significant differences in Rd among 
the different leaf location. 

Table 1: Net photosynthesis (An), dark respiration (Rd), 
stomatal conductance (gs) and intercellular [CO2] (Ci) of 
E. grandis 
 
 Unit Centre East West 
An μmol CO2 m-2 s-1 9.50 ± 0.86 b 9.60 ± 0.79 b 7.24 ± 0.57 a 
Rd μmol CO2 m-2 s-1 –2.69 ± 0.27 –2.37 ± 0.32 –2.54 ± 0.30 
gs  mol H2O m-2 s-1 0.079 ± 0.010 a 0.101 ± 0.009 b 0.076 ± 0.004 a 
Ci  μmol CO2 mol-1 170 ± 9 a 206 ± 9 b 191 ± 7 ab 
 
Table 2: Emission of isoprene and monoterpenes (nmol m-

2 s-1) from E. grandis measured at leaf temperature 30 °C 
and PPFD of 1000 μmol m-2 s-1 
 
Compound Centre East West 
Isoprene 11.1 b 18.8 c 7.4 a 
                                  Mean 12.5 ± 1.9 
Monoterpenes    
α-pinene 0.994 b 1.254 c 0.638 a 
Camphene 0.112 a 0.174 b 0.122 a 
Sabinene 0.294 a 0.233 a 0.597 b 
β-pinene 0.227 b 0.348 c 0.074 a 
β-myrcene 0.884 b 1.749 c 0.270 a 
α-phellandrene 0.068 b 0.155 c 0.016 a 
3-carene 0.078 ab 0.110 b 0.032 a 
a-terpinene 0.053 b 0.050 b 0.009 a 
p-cymene 0.857 b 1.031 c 0.400 a 
1-8 cineole 0.962 b 2.038 c 0.695 a 
Limonene 9.788 b 16.850 c 2.948 a 
γ-terpinene 0.098 b 0.195 c 0.024 a 
α-terpinolene 0.078 a 0.196 b 0.034 a 
Linalool 0.128b 0.046 a 0.065 a 
Camphor 0.077 0.088 0.070 
                                  Total  14.7 b 24.5 c 6.0 a 
                                  Mean 15.1 ± 3.1 
 

 
 
Fig. 1: Simplified scheme of the model procedure to 
estimate isoprene emissions. The grey boxes represent the 
model input data 
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 Isoprene and monoterpene emission was also 
significantly affected by leaf position (Table 2). Emissions 
of both compounds decreased significantly from east to 
west. In general, a similar pattern was seen also in the 
predominant monoterpene compounds of the emitted blend 
of VOCs. The most abundant compound emitted was 
limonene, accounting for between 50 and 68% of the total 
monoterpene emission in the different leaf types, followed 
by 1-8 cineole, β-myrcene and α-pinene. 
 
Model Simulations 
 
The photosynthetically active radiation above the canopy 
derived from the global radiation reached values of about 
361 and 74 W m-2 for direct and diffuse radiation (Fig. 2), 
respectively. The estimated leaf temperatures typically 
differed by a few degrees from the air temperature. The 
computations suggest that at midday, in a canopy with a 
high LAI, sunlit leaves were about 2 K warmer than air, 
while shaded leaf temperature hardly differed from air 
temperature. As expected, PPFD absorbed by the leaves 
within a canopy decreased with the canopy depth, as a result 
of the attenuation of diffuse light (data not shown). At LAI 
= 7 the isoprene emission on the selected day (March 24, 
2010) reached a value of 51.8 mg m-2 d-1. The diurnal 
variation of the isoprene emission at LAI = 7 was a 
maximum of 7.9 mg m-2 h-1 (Fig. 3). In such a canopy, 42% 
of the isoprene emission comes from the top of the canopy 
(L = 0 – 1), and only 2% from the bottom. The time course 
of the isoprene emission course showed its strong 
dependence on light (Fig. 4). The spatial distribution of the 
emission (Fig. 5) was determined by the occurrence of 
Eucalyptus forests, which are mainly found in the Eastern 
part of the Entre Rios province. The maps show averaged 
values of 100 LAI grid cells with a resolution of 5’ × 5’. 
For the whole study area the isoprene emission totalled 
39.5 t d-1. 
 
Discussion 
 
Eucalyptus species are strong isoprene and monoterpene 
emitters, with large amounts of monoterpenes stored in 
specialised leaf cavities (Ashworth et al., 2013; Brilli et al., 
2013). In such species, monoterpenes are largely emitted by 
evaporation in response to mechanical stress and warming 
(Ashworth et al., 2013). However, it has been demonstrated 
that emission rate of monoterpenes is not completely 
decoupled from their biosynthesis (Staudt et al., 1997; 
Komenda and Koppmann, 2002), as between 30‒90% of 
total emission derives from light-dependent newly 
synthesized monoterpenes. The values of isoprene and 
monoterpene emissions recorded in this study reported in 
the literature for a number of Eucalyptus species (He et al., 
2000; Brilli et al., 2013). Furthermore, isoprene 
measurements carried out above canopies of other species 
and ecosystems are also available, such as scrubland, 

 
 
Fig. 2: Diurnal variation of the hourly global radiation 
based on measurements at the meteorological station in 
Concordia, Entre Rios, on March 24, 2010, and the 
calculated incident direct and diffuse PAR (photosynthetic 
active radiation) above the canopy 
 

 
 
Fig. 3: Isoprene emission of the sunlit and the shaded 
fraction of the Eucalyptus canopy and of the total canopy at 
March 24, 2010, in dependence on the leaf area index, as 
calculated by the model 
 

 
 
Fig. 4: Diurnal variation of isoprene emissions of an 
Eucalyptus canopy (LAI = 7), as calculated by the 
model 
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grassland and bogs in regions with temperate and tropical 
climate (Pacifico et al., 2009). The maximum fluxes of 
isoprene above forest canopies ranges between 2.2 mg m-2 
h-1 for a tropical evergreen broadleaf forest in Amazonia 
(Rinne et al., 2002; Müller et al., 2008) and 29 mg m-2 h-1 
for a temperate deciduous broadleaf forest in Michigan 
(Pressley et al., 2005). Our estimate of the maximum 
isoprene flux (7.9 mg m-2 h-1) for the Eucalyptus forest is 
thus within this measurement range.  

Due to the asymptotic behaviour of the light 
dependency (Equation 3), maximum isoprene emission is 
easily achieved by leaves exposed to strong direct radiation. 
In contrast, shaded leaves are exposed to lower diffuse 
radiation, thus an increase of diffuse radiation leads to a 
more efficiently increase of isoprene emissions than found 
in sunlit leaves. Shaded leaves therefore constitute an 
important part of the canopy, and contribute significantly to 
biogenic emissions. In the present study, direct and diffuse 
PAR fluxes have been computed based on the global 
radiation for a clear sky. On such a day, diffuse radiation is 
much smaller than direct radiation, and exhibits little 
variation over the course of the day. However, during 
overcast skies, the contribution of diffused radiation may be 
larger and can exceed the contribution of the direct 
radiation. Therefore, to estimate biogenic emissions over 
longer periods it would be recommended to apply a method, 
which takes into account cloudiness, or to measure both 
components of radiation towards their use as inputs for the 
radiation canopy model. The light-dependence of isoprene 
emissions is relatively similar for a variety of plants (see 
e.g. Pacifico, 2009), so these estimations of isoprene 

emissions can be considered to be quite reliable. 
Isoprene is predominantly emitted from the sunlit 

fraction of the canopy, but also the shaded fraction exhibited 
to diffuse light. Light strongly determines isoprene 
emissions and the equation that describes this dependency is 
well known (Equation 3). In contrast, monoterpene 
emissions depend strongly on temperature, and a 
exponential function has been proposed to describe the 
temperature dependency (Tingey et al., 1980). Approaches 
exist to describe the biosynthesis and emission of terpenoids 
in a mechanistic way. Bäck et al. (2005) described the 
synthesis of monoterpenes in a model including 
photosynthesis and photorespiration, which also requires a 
high number of model parameters not known in the present 
study. Other models (Niinemets and Reichstein, 2002; Noe 
et al., 2006) take into account monoterpene emission 
kinetics, related to the pools where monoterpenes are stored. 
These models require a greater number of input parameters, 
but in future studies may possibly be considered to replace 
the current empirical equation for monoterpenes. 

The separation of the two components of PPFD (i.e., 
direct and diffuse PPFD) allows describing the light-
dependent processes in the canopy. Due to the asymptotic 
behaviour of the light dependency (Equation 3), the 
maximum level of isoprene emission is easily reached for 
leaves exposed to strong direct radiation. In contrast, shaded 
leaves are exposed to lower diffuse radiation and an 
increase in diffuse radiation leads to a more efficient 
increase in isoprene emission than in sunlit leaves. Shaded 
leaves therefore constitute an important part of the canopy, 
and contribute significantly to biogenic emissions (Fig. 3). 

 
 
Fig. 5: Isoprene emission in μg m-2 in the Argentine Entre Rios province on March 24, 2010. To improve the visual 
presentation, the values of 100 LAI grid cells have been averaged 
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In overcast skies the contribution of diffuse radiation to 
emission of isoprenoids may be even larger and exceed the 
contribution of direct radiation. 

The difference between leaf and air temperature is 
strongly affected by the radiation absorbed the leaves. 
Leaves at the top of a canopy receive more shortwave 
radiation than leaves inside the canopy because radiation 
decreases with canopy depth. However, leaves at the top of 
a canopy receive relatively little thermal radiation from the 
sky in comparison with leaves fully surrounded by canopy, 
because the sky has a lower emissivity (approximately 0.80 
in our case study) than leaves, which have an emissivity of 
nearly one. The wind speed profile within the canopy - with 
decreasing wind speeds from top to down (Monteith and 
Unsworth, 2007) - leads to a decreasing tendency for the 
energy exchange by transpiration and convection with 
ambient air (Campbell and Norman, 1998). When the model 
is performed with a leaf temperature equal to air 
temperature, the daily isoprene emission becomes 3% 
smaller and the maximum isoprene emission is reduced by 
0.4 mg m-2 s-1. This indicates that in the present study of a 
single day, the difference between air and leaf temperature 
does not have a major influence on the emission estimates. 
However, on a global scale, isoprene emission is reported to 
be 18% higher when leaf temperature is used instead of air 
temperature (Müller et al., 2008); as a consequence, to 
conduct a more comprehensive approach an estimation of 
leaf temperatures is preferable. 
 
Conclusion 
 
The present study utilises the results of field gas exchange 
measurements of a Eucalyptus species with the aim of 
estimating spatially resolved and time-dependent isoprene 
emissions in the Entre Rios province of Argentina. These 
measurements, combined with meteorological 
measurements, forest inventory and satellite-based data (leaf 
area indices), suggest emissions of up to approximately 39.5 
t d-1 isoprene in the course of a clear summer day. Future 
studies could take into account a higher resolution of 
meteorological input data, in addition to leaf age nutrient 
conditions, soil moisture and stress situations of the plant. 
Furthermore, other model approaches could be tested taking 
into consideration the internal CO2 concentration of leaves. 
For this, however, more gas exchange and field 
measurements are needed. These measurements could 
include seasonal dependencies of the emissions and should 
cover the whole spectrum of tree species in the 
Mesopotamian region of Argentina.  
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