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A B S T R A C T   

Vegetation responses to variation in climate are a current research priority in the context of accelerated shifts 
generated by climate change. However, the interactions between environmental and biological factors still 
represent one of the largest uncertainties in projections of future scenarios, since the relationship between drivers 
and ecosystem responses has a complex and nonlinear nature. We aimed to develop a model to study the veg
etation’s primary productivity dynamic response to temporal variations in climatic conditions as measured by 
rainfall, temperature and radiation. Thus, we propose a new way to estimate the vegetation response to climate 
via a non-autonomous version of a classical growth curve, with a time-varying growth rate and carrying capacity 
parameters according to climate variables. With a Sequential Monte Carlo Estimation to account for complexities 
in the climate-vegetation relationship to minimize the number of parameters. The model was applied to six key 
sites identified in a previous study, consisting of different arid and semiarid rangelands from North Patagonia, 
Argentina. For each site, we selected the time series of MODIS NDVI, and climate data from ERA5 Copernicus 
hourly reanalysis from 2000 to 2021. After calculating the time series of the a posteriori distribution of pa
rameters, we analyzed the explained capacity of the model in terms of the linear coefficient of determination and 
the parameters distribution variation. Results showed that most rangelands recorded changes in their sensitivity 
over time to climatic factors, but vegetation responses were heterogeneous and influenced by different drivers. 
Differences in this climate-vegetation relationship were recorded among different cases: (1) a marginal and 
decreasing sensitivity to temperature and radiation, respectively, but a high sensitivity to water availability; (2) 
high and increasing sensitivity to temperature and water availability, respectively; and (3) a case with an abrupt 
shift in vegetation dynamics driven by a progressively decreasing sensitivity to water availability, without any 
changes in the sensitivity either to temperature or radiation. Finally, we also found that the time scale, in which 
the ecosystem integrated the rainfall phenomenon in terms of the width of the window function used to convolve 
the rainfall series into a water availability variable, was also variable in time. This approach allows us to estimate 
the connection degree between ecosystem productivity and climatic variables. The capacity of the model to 
identify changes over time in the vegetation-climate relationship might inform decision-makers about ecological 
transitions and the differential impact of climatic drivers on ecosystems.   

1. Introduction 

Ecosystem responses to climatic variability are a major research 
priority in the context of accelerated shifts generated by climate change 
(Walther et al., 2002). In particular, it is widely accepted that vegetation 
is exposed to increasing environmental and meteorological conditions 
variation, involving extreme events such as flooding (Arnell and Lloyd- 
Hughes, 2014; Poff, 2002) and long-lasting unfavourable circumstances 
as in the case of droughts (Cook et al., 2018; Pokhrel et al., 2021), 

threatening their survival. Grassland ecosystems will likely experience 
the greatest proportional change in biodiversity because of the sub
stantial influence of biodiversity change drivers such as land-use change, 
climate change, nitrogen deposition, biotic exchange and elevated car
bon dioxide concentration (Sala et al., 2000). However, the interactions 
among physical and biological factors still represent one of the largest 
uncertainties in projections of future scenarios, since the relationship 
between drivers and ecosystem responses has a complex and nonlinear 
nature (Walther, 2010). Then, the nature of the relationship among 
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factors, the parameter estimations and the magnitude of the ecosystem 
response to drivers are still major research topics in such complex sys
tems (Moore, 2018). 

Physiological and ecosystem responses to climatic variables or, more 
generally, to varying environmental conditions, have several levels of 
complexity. The effect of temperature is not monotonic, under both field 
and laboratory conditions, the photosynthetic activity of vegetation 
response increases with temperature, and after reaching a maximum 
decreases again (e.g. Varela et al., 2012), and similar non-monotonic 
patterns were found for vegetation response to rainfall with productiv
ity increases, and then decreasing after reaching optimal values (Zhang 
et al., 2020). Such a response is common in most ectothermic organisms, 
and several nonlinear models of physiological response to temperature 
were developed (Logan et al., 1976; Sharpe and DeMichele, 1977; Briere 
et al., 1999). However, the response to rainfall is more complex, ac
cording to the two-layer hypothesis (Walter, 1939, 1971; Ward et al., 
2013). In arid and semiarid ecosystems, water use is partitioned 
depending on the niche dimension: grasses and other herbaceous plants 
use the water available in the upper layers of soils and shrubs use water 
from the lower layers. This pattern was identified in different regions 
(Ward et al., 2013), including the Patagonian steppes from Argentina 
(Pelaez et al., 1994; Sala et al., 1989; Soriano and Sala, 1984). However, 
the latter is not a strict separation, thus some shrubs also use water from 
the upper layers (Pelaez et al., 1994). By developing roots that grow 
deep, shrubs reach lower layers of soil. Consequently, some shrubs have 
access to water from distant sources such as groundwater, which can 
flow from long distances within the basin, generating a water avail
ability pattern that is delayed and low-pass filtered (i.e. a smoothed 
function with the high-frequency variability dampened or removed) 
rainfall function (Crosbie et al., 2005; Oudin et al., 2004; Sun and Wang, 
2012; Wu et al., 2002). The said pattern is also a common strategy for 
other plants, even for herbaceous species, which live in the neighbour
hood of shrubs or within a wetland. Hence, they use the water table 
whose dynamics are also dependent on the basin geomorphology. 

In biological organisms, the interaction among different resources 
follows Liebig’s Law of Minimum (Liebig et al., 1842; Hooker Jr, 1917). 
From that perspective, the growth is not a function of the total available 
resources, but of the scarcest or lacking resources. Therefore, it is known 
as the limiting factor. The law of the minimum in non-stationary systems 
or systems being forced to change by the effect of an external driver, 
such as semiarid ecosystems under the effect of climate change, has 
complex implications (Easdale et al., 2022). In particular, a non-linear 
response is induced when the resource is limited, so the system will 
increase its output (or productivity) until another resource becomes 
limited (following a sigmoidal response in the process). For example, if 
an ecosystem is limited by water, it will increase its productivity with 
increasing amounts of water until it becomes limited by temperature or 
nutrients. Hence, a methodology capable of dealing with changes in the 
limiting factors is a desirable tool in the analysis of the long-term dy
namics of ecosystems. 

The approaches aimed at tackling the vegetation response to varia
tions in climate range from very simple—such as those based on linear 
regressions—to highly complex models formulated as complex spatially- 
explicit dynamical systems. As in the mathematical modelling literature, 
these approaches are subject to a trade-off between biological meaning 
and parameterization adjustment (Jehn et al., 2019). On the one hand, 
the simpler models lack biological realism but the parameters are easier 
to calculate. On the other hand, more complex models are closer to 
emulating biophysical realism, but their parameters are difficult to es
timate due to their greater number and nonlinearity and lack of gener
ality because these are more case-specific (Sharov, 1996), and more 
prone to overfitting (Claeskens and Hjort, 2008). Very simple models 
might lead to incorrect results as a consequence of linearizing nonlinear 
relations, do not adequately approximate real biophysical processes (eg: 
water use by vegetation), or because they ignore temporal autocorre
lations in data; whereas more complex models may result in uncertain 

predictions due to the high dimensionality of the error matrix and given 
the same data set, to the decrease in degrees of freedom of the model, 
increases the uncertainty of the estimation, for example, for dynamical 
systems, the logarithm of the error decreases with the logarithm of the 
degrees of freedom of the model (Mitchell, 2015). Therefore, a combi
nation of a model with biological realism and simple calculations is 
more desirable when using field data. 

Resolution issues also compromise the modelling of ecological pro
cesses. As the complexity of the studied system increases with the 
temporal resolution, for example, according to the central limit theorem, 
the standard deviation of an independent sampled random variable 
decreases with the square root of the sample size (Rosenblatt, 1956). 
Lower-resolution studies usually group together several consecutive 
samples, in a procedure known as data decimation or downsampling, 
reducing also the temporal variability. Reducing the resolution also in
creases the aliasing in the time series (Landau, 1967), resulting in series 
that contain less information and are also distorted, so keeping the 
original resolution is a desirable property of any analysis of a time series 
data. This is very usual in climate-vegetation studies, which are per
formed at a one-year or interannual time resolution (e.g. Hou et al., 
2015; Luo et al., 2020), and less frequent in higher than annual reso
lution (Roerink et al., 2003). While the main advantage of using deci
mated time series is the possibility of using simultaneous meteorological 
and vegetation data, it can be improved by using time-lag models (Wu 
et al., 2015). 

With no seek of completeness, some approaches found in the litera
ture are soil-plant-climate biophysical models (Johnson et al., 2008; 
Jones et al., 2003), multiple linear regression and factor analysis on 
yearly aggregated data (Çamdevýren et al., 2005), stepwise cluster 
analysis (Zheng et al., 2018), harmonic and Fourier analysis (Menenti 
et al., 2010), and distributed-delay models with Gaussian process 
(Bruzzone and Easdale, 2021;Díaz-Villa et al., 2022). 

An alternative option is to use simple dynamical models based on 
ordinary differential equations (ODE), frequently used to explore re
lationships among different variables (Rosenbaum and Rall, 2018; 
Strohm and Tyson, 2012). The development is conceived from a bottom- 
up logic aimed at describing dynamical systems. The study of plant 
population or productivity dynamics has a long historical tradition, it 
was performed even before the availability of the first time series of 
vegetation indexes in the 1980s, as in Noy-Meir’s theoretical models 
(Noy-Meir, 1973, 1975). However, one main drawback of this approach 
is that if the parameters are fixed, the system is assumed to be time- 
invariant, which means that the response to a variation on external 
conditions is the same with time, and differences between measure
ments and expected values are attributed to measurements errors and 
model uncertainty, as in the case of Kalman filters (Kalman, 1960). 
Examples are the application to time series of NDVI, EVI or other 
remote-sensed vegetation data of Linear and Non-Linear Time Invariant 
(LTI and NLTI, respectively) filter as in Kogan and Zhu, (2001), and 
more frequently, several versions of the Kalman Filters (Kleynhans et al., 
2010; Sedano et al., 2014). 

Other less-explored alternatives are non-autonomous versions of 
classical population dynamic models with time-varying parameters that 
were first proposed by Coleman (1979) (see Hallam and Clark, 1981), 
which are simple yet powerful alternatives. In these models, the pa
rameters are allowed to vary over time according to some external 
variable, hence the “non-autonomous” name, while the others in which 
the parameters are fixed and are not influenced by external factors are 
called “autonomous”. In these cases, the complexities of the physiolog
ical, soil and other environmental components are replaced by black-box 
population-level functions that modify the model parameters, resulting 
in a simple model configuration. These kinds of models are adequate to 
describe biological systems in which the population response lags 
behind changes in the environmental conditions (Baranyi et al., 1993a). 
Some examples applied to different types of biological populations are 
Ikeda and Yokoi (1980) for fishes, Baranyi et al. (1993a, 1993b) for 
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bacterial growth, Bruzzone and Utgés (2022) for insects, and Samanta 
(2012) for modelling population dynamics in environments subject to 
pollution. 

Therefore, instead of developing a high-intrinsic-complexity model 
where the variability of the vegetation response to climate is modelled in 
detail, designing a hybrid approach where model parameters are 
allowed to vary over time instead of being fixed and invariant is an 
alternative. This procedure reduces the requirements of data details—
which are frequently unavailable or difficult to obtain—and avoids 
using a huge number of parameters which increases the uncertainty of 
the estimations. 

Another issue concerning the vegetation response to climate varia
tions is tracking the studied phenomenon variations through time. That 
is usually accomplished via Granger causality (Granger, 1969; see 
Kaufmann et al., 2003, de Jong et al., 2011). The main drawback of the 
Granger Causality—as originally formulated via autoregressive models 
is its linearity when analyzing strongly nonlinear systems such as 
climate vegetation or most biological systems (Diks and Wolski, 2016). 
Hence, for these cases, nonlinear versions are also proposed (Papa
giannopoulou et al., 2017), whereas an alternative is to use a model- 
based method with differential equations (Friston et al., 2013). 

Since most natural systems are highly complex—and the relationship 
between ecosystems and climate is not an exception—a compromise 
solution is still needed. In the context of this research, we tackle varia
tions by using a simple parametric model between time-varying envi
ronmental variables (i.e. climate) and population-level parameters (i.e. 
productivity of ecosystems), without increasing the complexity of the 
model. Several alternatives are available in the literature for this kind of 
situation. For instance, one option is to locally fit the model over a 
sliding window on the data time series. This approach has two main 

methodology families: i) Moving Horizon Estimation (Rawlings, 2009; 
Hedengren et al., 2014), which is itself a generalization of the Kalman 
Filter (Rao et al., 2003); and ii) Particle Filter or Sequential Monte Carlo 
Estimation (hereafter named SME), which is a bayesian-based method
ology that sequentially implements a Markov Chain Montecarlo 
(MCMC) procedure on the data (Del Moral, 1996). SME has already been 
used by several authors for modelling NDVI time series with sound re
sults (Chakraborty et al., 2017; De Bernardis et al., 2016a, 2016b). 

We propose the combination of SME methods with non-autonomous 
models to address the shortcomings of both types of methodologies, and 
to account for the model uncertainties and measurement errors, while 
simultaneously modelling variation on the model parameters in 
response to external factors. Therefore, in this study, we aimed at 
developing a model to study the dynamic response of vegetation primary 
productivity to temporal variations in climatic conditions as measured 
by rainfall, temperature and radiation. In particular, how the relation
ship between climatic drivers and vegetation responses varies over time 
and the coupling strength among them. The questions that guided this 
research were: i) does the ecosystem productivity respond differently 
under varying climatic conditions over time? ii) Can the ecosystems 
couple and decouple from climatic drivers over time? We proposed the 
application of a simple ODE-based dynamical system based on a non- 
autonomous version of the well-documented Brody-monomolecular 
growth curve with a time-varying carrying capacity. We added a 
Sequential Monte Carlo Estimation applied to a moving window to ac
count for the model parameter’s variation over time and the overall 
explanatory power of the model. 

2
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Fig. 1. Map of the study area, located in the Rio Negro Province, Argentina, showing the principal ecosystem types in different colours. Red-blue circles are the 
geographical position of the archetypoid pixels used in this study, and the adjacent number indicates the archetype number, according to Table 1. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Materials and methods 

2.1. Study cases 

The study area was the arid and semiarid rangelands of North 
Patagonia, Argentina (see map in Fig. 1). This area is characterised by 
shrublands and shrub-grass steppes, with small areas of meadows to
wards the west. Climate is arid and cold, with a W-E rainfall gradient of 
250 mm to 150 mm, and mean annual temperatures varying spatially 
between 8 ◦C and 13 ◦C, at the upper and lower heights, respectively 
(Godagnone and Bran, 2009). Altitude decreases from the west (with 
hills and plateaus over 1000 m.a.s.l.) to the east and northeast (with 
great plains below 500 m.a.s.l.). 

We used six previously identified sites that best represented different 
rangeland dynamics in a great semiarid region from North Patagonia, 
Argentina (Bruzzone and Easdale, 2021). In that study, an archetypal 
analysis was applied to a matrix containing the power spectrum of the 
MODIS NDVI time series of a wide region, considering the above- 
mentioned east-west environmental gradient. Six pixels—named 
quasi-archetype pixels—represented key areas with contrasting dy
namics, whose linear combination explained 97% of the power spectrum 
variability in the studied area (see geographical location and main 
environmental characteristics in Table 1 and Fig. 2). Hence, the different 
pixels are both contrasting in their temporal dynamics and representa
tive of large areas of similar rangeland dynamics. This region has a low 
human population density and its main economic activity is extensive 
livestock production and pastoralism (Easdale et al., 2009). Therefore, it 
is a large area with low human intervention, where vegetation cover was 
less modified as compared with land-use change involving cover shifts 
(e.g. agriculture, irrigation or mining). Then, for the 20-year period 
analyzed in this study, rangeland dynamics were mostly driven by 
climate and environmental factors at a regional scale. 

2.2. Data source 

For each pixel, we obtained the time series of the Normalised Dif
ference Vegetation Index (NDVI) from the Moderate Resolution Imaging 
Spectroradiometer dataset (MODIS13Q1, version 6). The spatial reso
lution of the pixel is 6.25 ha and the series consisted of 16-day com
posites for the period February 2000 to September 2021. Time series 
from these pixels were processed by removing the negative values and 
by only keeping the positive values, whose pixel reliability index was 
0 or 1. The others were marked as invalid data and removed from the 
analysis. 

In order to keep the resolution of the study at the highest level, we 
used a single pixel for each analysis, instead of pooling several neigh
bouring pixels into a single time series. Pooling neighbouring pixels will 
increase the uncertainty on the estimation parameters by mixing more 
different vegetation types. In addition, since it is a mountainous region, 

the presence of topographical differences between pixels from the same 
ecosystem may produce differences in the time delay of underground 
water availability, which distort the window function used to model 
water availability in unpredictable ways. Finally, by using a single pixel 
we avoid causing information loss by jitter (or phase noise), caused by 
the topographical differences among pixels. 

For the explanatory variables, climate data were obtained from the 
ERA5 hourly reanalysis dataset (Hersbach et al., 2020). These ERA5 data 
have a spatial resolution of 31 km, and the hourly data were aggregated 
into daily data, so the final temporal resolution was 24 h. We selected 
the cell from the 31 km dataset matrix that most overlapped with each 
MODIS pixel. The selected meteorological variables that were used for 
the analysis were: i) 2-m temperature, ii) total precipitation and iii) total 
surface radiation, for the period 1998 to 2021. 

2.3. Model formulation 

We used a non-autonomous growth curve as the base for the model 
development. In the study resolution timescales—which was the mean 
distance in time between two consecutive MODIS images (16 days)—we 
expected to find a phenological rather than a populational response. 
Hence, instead of the more population-oriented Sigmoid curves, such as 
Gompertz or logistic models, we chose a physiological-type model, 
without inflexion points. The reason for this choice is that a population 
model has, firstly, an exponential growth, and then the growth slows 
down following a typical sigmoidal shape. Due to the temporal resolu
tion of this study (16 days), the population response is very small, and 
the plants present in the MODIS images are growing or reducing their 
aerial parts (mostly leaves) in response to changing environmental 
conditions. Therefore, the response is not necessarily expected to be 
sigmoidal. Following the model from Zeng et al. (2002), we used a well- 
known and simple vegetation dynamics model, which is also similar to 
the basic formulation of the monomolecular growth curve and the 
Michaelis-Menten enzyme kinetics model, which is one of the best- 
known models of this type and the basis of many physiology models. 
Therefore as a starting point, we used the following differential 
equation: 

dN(t)/dt = r (Kc(t) − N(t) ) (1)  

where N is the vegetation activity, represented by the NDVI, r is the 
growth rate or speed of the vegetation response to a change in the 
environmental conditions, and Kc or carrying capacity is the expected 
photosynthetic activity under the given set of c climatic conditions. In 
this curve, the resulting growth is the multiplication of the growth rate 
by the difference between the actual population size (N) and the car
rying capacity (K). Therefore, under this model, if Kc > N it results in a 
positive growth and the photosynthetic activity increases towards Kc; 
also, if Kc < N, the growth is negative, meaning that the photosynthetic 

Table 1 
List of geographical coordinates and main environmental characteristics of the six quasi-archetype pixels of MODIS used in this study, which represent the different 
rangeland archetypes, respectively. Quasi-archetype data and main features were obtained from Bruzzone and Easdale (2021).  

Archetype 
# 

Latitude Longitude Main ecosystem features Height (m. 
a.s.l.) 

Mean Daily 
Temperature (◦C) 

Mean Daily 
Radiation J /m2 

Mean Annual 
Rainfall (mm) 

1 − 41◦ 31′

22.50” 
− 70◦ 17′

1.73” 
Highlands and lagoons with stochastic 
dynamics 

1374 6.6 13.6 487.2 

2 − 41◦ 47′

52.50” 
− 69◦ 22′

28.41” 
Rangelands in negative phase 1140 12.4 13.2 425.1 

3 − 41◦ 48′

30.00” 
− 65◦ 12′

46.46” 
Oscillatory shrublands 168 16.6 12.2 874.3 

4 − 41◦ 8′

0.00” 
− 66◦ 34′

23.56” 
Shrublands with a shoulder-head- 
shoulder temporal pattern 

790 16.4 12.8 680.6 

5 − 41◦ 35′

37.50” 
− 69◦ 23′

9.23” 
Stationary meadows 977 12.8 13.2 448.5 

6 − 41◦ 26′

0.00” 
− 69◦ 15′

1.01” 
Post-perturbation recovery of lowland 
steppes 

911 14.1 13.4 386.1  
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activity decreases. The model is simply a growth curve with a time- 
varying carrying capacity. Under constant conditions, Kc is the asymp
totic value of N (or NDVI), having the same units (unitless in this case), 
but here, Kc is allowed to freely vary according to the climate, so it is a 
non-autonomous model, as one of the parameters varies according to 
one external variable. Hence, the vegetation response to climate was 
measured by the variation of the K parameter. If K increased, the N 
variable increased following that parameter at a rate of r. As a conse
quence, r is the rate of increase, but also the inverse of the vegetation 
response time to the climate in years (y), according to the model of Zeng 
et al. (2002), having thus units of 1/y. 

Vegetation was assumed to respond to three climatic variables: i) 
mean daily temperature (T), ii) daily rainfall (P), and iii) mean daily 
radiation (R). In all cases, we assume that the carrying capacity K re
sponds logistically to changes in climate because NDVI on land is a 0 to 1 
bounded variable, thus it cannot have expected values outside that in
terval. So, for any climatic variable, K is: 

Kc(t) = 1 −
1

1 + e− c(t) (2)  

where c can be any climatic variable (either T, P or R) and c(t) is its time- 
series. Hence, for K dependent on temperature, K is KT, for K dependent 
on rainfall is KP, and if it depends on radiation is KR. 

Since rain is a highly concentrated phenomenon in time, with most of 
the days without precipitation, using it will directly lead to a time series 
with most of the estimated K being zeros. Therefore, we created a water 
availability function which is the integral of a water balance function into 
the time series multiplied by the rainfall in that period, transforming 
eqs. 1 and 2 into an integrodifferential equation. That function is the 

convolution between the rainfall as a function of time and a probability 
density function that smooths the rainfall time series. A probability 
distribution function is chosen to avoid inflating or deflating artificially 
the estimated water availability and the weighting function must have a 
constant integral equal to one. As a result, the water availability is a 
weighted moving average of the rainfall data. Thus, the water avail
ability is defined as follows: 

w(t) =
∫ x=t− d

x=t
P(t)G(x,α, θ)dx (3)  

where t is the time, w the available water for the plants at time t, P(t), the 
rainfall, d the time scale at which the water availability operates, x the 
number of days to the past at which the w function is evaluated, and G is 
a probability density function of a general gamma statistical distribution 
with parameters α (shape) and θ (scale). Following Bain and Engelhardt 
(1992), to avoid confusion with the parameter K from eqs. 1 and 2, we 
called the shape parameter α, instead of κ, as is usual in shape and scale 
representations of this statistical distribution. While previous studies 
have chosen simple moving averages for modelling this variable, that 
function together with the usage of a square-shaped window results in 
the same weight as rainfall episodes occurring closer in time to the NDVI 
measurement data and several weeks after. 

On the other hand, with that statistical distribution, we modelled the 
process of charging and slowly discharging the water reservoir after
wards. In the case of superficial water reservoirs, that is moisture present 
in the superficial layers of soil that only recharge from rainfall and do 
not receive water from underground reservoirs or runoff from areas 
located in topographically higher altitudes, the moisture discharge 
process usually resembles an exponential decay function (e.g. 

Fig. 2. Annual moving averages of temperature (A), radiation (B), and rainfall (C) for the six studied quasi-archetype pixels. Source of data: ERA5 reanalysis data set 
(Herbach et al., 2020). 
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Nakanwagi et al., 2020; Xu et al., 2004), and is a consequence of the “soil 
as a capacitor” model proposed by Bisigato et al. (2013). As the expo
nential decay process is a special case of the gamma curve, it can be also 
modelled using that curve. While other options are possible, we chose 
that statistical distribution because it is a simple and straightforward 
description of the rainfall accumulation process, and it is frequently used 
to model accumulated rainfall processes (Yoo et al., 2005; Husak et al., 
2007;Martinez-Villalobos and Neelin, 2019). Another advantage ac
cording to Martinez-Villalobos and Neelin (2019) is that it makes it 
possible to track distribution changes quantitatively. Gamma distribu
tion is also used to convolve the rainfall time series to estimate 
groundwater level recharge (Besbes and De Marsily, 1984; Collenteur 
et al., 2019). 

While an important discharge rate might depart the process from that 
modelled via a Gamma curve, it is negligible in the semi-arid conditions 
of most of the study area. Hence, for the purposes of our study, a 
convolved vector between a rainfall time series and a Gamma distribu
tion curve is assumed to account for the whole process of water charge 
(via rainfall or underwater movement), and depletion (via plant usage, 
evaporation and discharge), measured at the centre of the archetypoid 
pixel, without the use of a complex water balance model. 

Therefore as explained above, to solve the eq. 3 model, the series was 
filtered via convolution of the rainfall time series and by using a Gamma 
distribution, resulting in an estimated water availability time series. The 
model was defined as follows: 

w = P*G(α, θ) (4)  

w being the water availability function, G the same Gamma distribution 
used in eq. 3. Then KP is replaced by Kw, to denote its dependence on 
water availability, which has an indirect dependence on rainfall. 

2.3.1. Interaction among variables 
The interaction among variables has a complex nature and solutions 

are not trivial. Some alternatives, such as multiple linear or polynomial 
models, can produce absurd results such as in the case of a humid winter, 
where sub-zero temperatures predict zero aboveground productivity (or 
K(t) = 0), but a simultaneous abundant water availability predicts high 
productivity (K(t) > > 0). In these circumstances, an additive linear 
model will have an output that is a weighted average between what is 
expected under the influence of both the temperature and the rainfall. 
Even with more complex models —such as multi-polynomial ones—
there is still the possibility that under extreme conditions the K(t) is 
higher than zero. 

As a consequence, we decided to choose the simplest model that 
complies with Liebig’s Law of Minimum (Liebig et al., 1842). This model 
has a restriction: the expected value produced must be zero if the con
ditions in at least one variable are below a certain value in which the 
plants are physiologically unable to produce any outcome (i.e. above
ground productivity zero or near-zero). For example, if there is zero 
water availability, the roles of radiation or of temperatures are not 
relevant, since the productivity must be zero. As well, if the temperature 
is too low, the plants will remain dormant, independent of water 
availability or radiation levels. 

Two simple models comply with this condition: a) the minimum and 
b) the multiplicative. The minimum simply chooses the lowest of a series 
of proposed values and the multiplicative their multiplication. For 
example, if the expected K values under the three chosen variables are 
0.1, 0.5, and 0.4, the result will be 0.1 under the minimum model and 
0.02 under the multiplicative model. Also, if any of the expected K 
values is zero, the final expected K will also be zero, by modelling the 
dynamics of a system with a limiting resource. In Díaz-Villa et al. (2022), 
the minimum model was slightly better than the multiplicative one in 
fitting the dynamics of an EVI vegetation index of a subtropical forest. 
However, in the preliminary analyses, we found that it was very difficult 
to make it fit with the approach used in this paper. Therefore, following 

Bruzzone and Easdale (2021), we choose the multiplicative model. With 
this model—as in NDVI—all the expected K values as a function of 
climate range between zero and one, so the multiplication is the same as 
multiplying proportions. If the rainfall produces a 0.1 level, temperature 
0.5, and radiation 0.4, the interpretation is that temperature produces 
an expected value of one-fifth of the maximum possible 0.1, instead of 1. 
That logic has a more biological sense as compared to an arbitrary 
polynomial model, which can be used as an alternative. 

In this study area, the arid and semiarid rangelands periodically 
experience droughts and low and very high-temperature conditions, 
which become constraints for the development of vegetation, even if the 
other resources are abundant (Bruzzone and Easdale, 2021; Jobbágy 
et al., 2002). The usage of a multiplicative model allowed us to simplify 
the modelling of species distribution and abundance in which the re
sources become limited (Persson et al., 2007; Vaz et al., 2008; McCune, 
2011). Since the biological meaningful NDVI values range between 
0 and 1 (the negative values meaning bare soil, water bodies or snow 
cover), the use of a multiplicative relation allows for estimating the 
limiting resource. Hence, the K depending on climate (Kc) is then a 
multiplication of the estimation of the three K estimated using individ
ual climatic variables. 

Kc(t) = KT(t)KR(t)Kw(t) (5)  

2.3.2. Full model 
The expected NDVI value is the model in eq. (1), with the Kc(t) term 

replaced by eq. 5—which in turn contains eq. 4—into the Kw(t) term of 
eq. 5. Hence, we assume that N(t) is the central value of a stochastic 
process in which the measured NDVI value is the sum of N and a 
Gaussian error term containing the measurement errors: 

NDVI(t) = N(t)+ ε(t) (6)  

with 

ε(t) ∼ N(0, σ(t) )

where NDVI(t) is the measured NDVI value at time t and ε(t) is the error 
term at time t which follows a Normal distribution with mean zero and 
standard deviation σ. The standard deviation varies with time, allowing 
an increase (or decrease) of error with time. For the sake of simplicity, 
we assume that the errors are purely additive (i.e. do not change with N). 
Finally, we assume that all the autocorrelation measurements are caused 
by the underlying deterministic process N, so the errors ε(t) are inde
pendent. In this way, we avoid using an ARIMA or a Gaussian process in 
the model. 

NDVI is a constrained variable, defined in the interval [− 1,1]. 
Although, as mentioned above, only the values between 0 and 1 have 
biological meaning, there are certainly negative measured values, and 
very low values are noise caused by reflections of bare soil and snow 
cover. The ε(t) term allows us to model the stochastic process for which 
there is some NDVI variability, even though N is low or even zero, 
leading to a better estimate of the process variability and modelling 
errors. 

The full formulation of the model contained a total of ten parameters, 
the growth rate (r), the origin and slope of the logistic function of K as a 
function of the three climate variables (To, Tsl, Ro, Rsl, Wo, Wsl), the α 
(shape) and θ (scale) of the Gamma function, and finally, the standard 
deviation (σ) of the error function. For the Gamma function, to ease the 
interpretation, the mean and standard deviation are called here PPDelay, 
and PPwidth respectively, and were calculated from α and θ, as the mean 
time from the rainfall and standard deviation are more intuitive in
dicators of the properties of the distribution than its original parameters. 

2.4. Numerical methods 

To estimate the parameters of the proposed model and its variation 
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over time, we chose a fully Bayesian approach in a sequential way, by a 
method called particle filter. 

2.4.1. Particle filter 
The objective of this analysis is to estimate the internal state and the 

model parameters described in eqs. 1 to 6, given a series of noisy mea
surements in the NDVI time series. Under this procedure, the Bayesian 
process of choosing a priori distribution, and using it to draw random 
values via a Montecarlo algorithm to generate posterior estimations of 
the parameters, is done sequentially and recursively along the time se
ries. Hence, the posterior distribution from one step is the prior distri
bution of the following. As a result, the estimations are obtained in the 
form of a posteriori distribution of the state variable and model pa
rameters across time. The internal state is represented solely by the 
estimated N value, the parameters are the inverse of response time r, the 
variables that compose the three Kc models, and the standard deviation 
of the error term. All the parameters are considered to be variable with 
time, or its posterior distribution is not constant in time as a conse
quence of some unknown physical process to be inferred after analyzing 
the model posterior distributions time series. 

To measure the vegetation response to climate and its variation over 
time, instead of applying the model from eq. (6) over the whole time 
series, we applied a sliding window over the NDVI time series to allow a 
more flexible estimation of the model’s parameters. 

To remove seasonality effects and to have a long enough time series 
to estimate the state variable and the parameters with an adequate level 
of uncertainty, we chose a two-year time window which contained 46 
data points. The window was slid from the beginning of the time series 
on February 18, 2000, to the last data used in the analysis on August 14, 
2022, resulting in a total of 495 data points with 449 two-year windows. 

2.4.2. Parameter estimation 
Once the windows have been defined, we estimated the model pa

rameters by employing the particle filter Sequential Monte Carlo Esti
mation method (SME), via the use of a sliding window over the observed 
NDVI time series. In the first step, the model parameters and the cor
responding state variables for the first 46 measurements were calculated 
using a Markov Chain Monte Carlo Method with uninformative a priori 
distributions to estimate the a posteriori distributions. Starting with the 
second window, it was applied sequentially on a series of observations, 
so the parameters a posteriori distribution estimated on a given window 
were used as a priori distributions for the next window that was offset to 
the first one by only one data point (or 16 days), therefore they overlap 
with the next one in 45 of the 46 data points of their length. Then, the 
distributions were updated and a posteriori distribution results were 
used for the following window. That procedure was repeated iteratively 
across the time series As a result, on each step, a series of values drawn 
from the parameters distribution and state variables from the previous 
step was used to compute the evolution of the dynamical system until 
the end of the window of that step. 

Each combination of state variables and parameters was named a 
particle. The difference between the estimated and observed values on 
each window was calculated using a normal log-likelihood function and 
it was used to give each particle a weight. Then, the best-fitting particles 
received a higher weight than the others. The particles with lower 
weights were discarded, and the ones with higher weights were repro
duced using a random distribution around their estimated value, in a 
similar way as in a genetic algorithm (Kwok et al., 2005). 

2.4.3. A priori distributions 
The analyzed variables on the model were the logistic regression 

parameters between K and climatic variables (according to eq. 2), the 
Gamma distribution parameters (eq. 4), and the growth rate (r), the state 
variable (the estimated NDVI value) and the linear correlation (r2) for 
each NDVI measurement. 

For temperatures, the parameters were To and Tsl which are the 

origin and the slope of the linear function being logistically transformed, 
respectively, to obtain Kt according to eq. 2. For radiation, the same 
parameters used to calculate KR were named Ro and Rsl. Finally, for 
rainfall, the parameters were Wo, Wsl, α and θ being the origin, slope 
from the logistic function, shape and scale from the gamma function, 
respectively. 

For all the origin parameters, a Normal a priori distribution was used 
with an initial mean of − 9.2, so when the climatic variable was zero, the 
estimated K was 0.0001, a value small enough to be indistinguishable 
from zero (to obtain a real zero, an origin equal to minus infinite is 
necessary), with a very wide standard deviation (5) so the distribution 
can be considered uninformative. Normal priors with zero mean, with a 
standard deviation of 1, were used for the slope, but it was restricted to 
the range between − 2 and 2 to avoid unfeasible local minimums. For α 
and θ, we used exponential prior distributions with a mean of 1 and 50, 
respectively, resulting in an average initial Gamma distribution with a 
mean of 50, mode 0 and a standard deviation of 50 for both variables. 
The very wide initial values for the Gamma distribution were chosen to 
account for the different study cases, some of which were wetlands, 
other grasslands, and other shrub steppes (Table 1). Hence, the response 
times to rainfall might be highly variable, since they can vary from a few 
days to several months. 

2.4.4. Calculations 
The SME procedure was applied on two-year-width sliding windows 

to remove any seasonal effect. The parameters and state variables fitted 
to one window were used as input for the next window period. For the 
first window (i.e. February 2000 to February 2002), since we did not 
have any previous information, we generated 131,072 random combi
nations of parameters and kept the best fitting of 256 combinations as 
the starting particles for the algorithm. Then, the algorithm further 
improved the fitting by generating 1024 random combinations of pa
rameters based on the selected ones and, again, we kept the best fitting 
of 256 particles. 

Then, from the second window onwards, the algorithm generated 
1024 new particles based on the previous 256, distributed according to 
the relative likelihood between the best-fitting particle and each of the 
following particles. Again, from these 256 particles and the newly 
generated 1024 ones, the best 256 fittings were kept for the next itera
tion. We have chosen that number of particles because, during pre
liminary runs, they were small enough to avoid overfitting while 
allowing the parameters to vary and adapt to new conditions. The 
acceptance ratio of 1/4 was chosen because it is considered a standard 
metric and it is recommended in the classical Montecarlo methods’ 
literature for drawing a posteriori distributions using rejection sampling 
(Gelman et al., 2004). 

For each iteration, a linear correlation (r2) between the NDVI esti
mated by each particle and the observed NDVI over the two-year period 
window was calculated. The following criterion was defined for this 
procedure. If none of the particles of the set had an r2 of at least a zero 
value (i.e., the fit was worse than a null model), the algorithm kept 
generating particles until at least one of them had an r2 of zero or higher. 

2.4.5. Analysis of the a posteriori time-series distributions 
The resulting output of the model consisted of a matrix of estimated 

parameters for each time window. The matrix was used to obtain the 
time series of the parameters a posteriori estimations. These were the 
intercept and the slope of the linear-logistic function (eq. 2) for each 
climate variable, plus the parameters of the Gamma function used to 
convolve the rainfall data (eq. 3), the state variable, and the linear 
correlation. The mean estimates and the 95% credibility intervals for 
each of these variables were calculated using 50%, 2.5% and 97.5% 
quantiles of the estimations on each NDVI measurement date, 
respectively. 

The two parameters used for describing the Gamma function α 
(shape) and (scale) were converted into mean and standard deviation in 
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order to make it more easily interpretable, with the mean equal to αθ, 
and the standard deviation equal to √αθ2. Those two moments were also 
called the mean delay and spread of the convolved time series of the 
water availability with respect to the rainfall. It should be noticed that 
delay refers to the mean of the distribution and not to the mode, which is 
the moment in time in which the peak of the water availability is 
reached after the rainfall. 

3. Results 

3.1. The overall pattern and fitting 

The algorithm applied to the pixels time series showed a good fitting 
with most of the NDVI data from the time series within the 95% credi
bility interval of the model regression (Fig. 3). The algorithm fitted 
similarly both in highly seasonal time series (Fig. 3.2 and 3.5) and in 
series with a less defined seasonality (Fig. 3.1 and 3.6). However, it had 
trouble with very strong non-seasonal or irregular perturbations, such as 
in the case of the 2011 depression caused by the volcanic ashfall event, 
registered in archetype 6 (Fig. 3.6). In addition, irregular bumps 
appeared in some cases, such as archetype 4 in 2019 and 2020 (Fig. 3.4). 
Overall, these were unpredictable strong departures from the mean. 

3.2. Coefficient of determination: a proxy of vegetation response to 
climate 

The model was capable of showing a variation in the explained data 
variance along the complete studied period. The r2—as a function of 
time—showed great variations. For instance, some archetypes evolved 
from a very high level of fitting to a near-zero level in the span of a few 
years, and in some cases, they returned to high levels of r2 again (Fig. 4). 
In particular, archetype 1 evolved from a moderate-low level of fitting in 
2000–2002 to near zero in 2002–2004, and it abruptly increased again 
to a high level of r2 close to 0.4 in 2003.5–2005.5 until 2006.5–2008.5, 
then it decreased again to near zero. That variation was repeated again 
two more times, settling on near-zero values at the end of the study time 
window (Fig. 4.1). Archetype 2 started with a high level of r2 (above 
0.6), reached a peak over 0.8 after the window 2005–2007, and began a 
slow decline to values below 0.2 after 2012–2014, increasing in 
2016–2018 but returning to low values in 2018–2020 (Fig. 4.2). For 
Archetype 3, the r2 was high with values between 0.4 and 0.6, until 
2003–2005 and 2005–2007 when it decayed to near-zero values and 
increased again to values above 0.6, then it behaved irregularly until 
2008–2010 where it decreased and remained in very low values until 
2012–2014. After that, r2 began to increase again and between 2015 and 
2016 it reached the same levels as in 2000. Then, it decayed again to 
near zero and finally increased to above 0.8 at the end of the observation 
window (Fig. 4.3). Archetype 4 was irregular, showing high-frequency 
variation in r2 from near zero to higher values, up to 0.8 along the 
entire study period (Fig. 4.4). Archetype 5 showed stable and high r2 

values between 0.4 and 0.8, without registering falls to near zero 
(Fig. 4.5). Finally, archetype 6 was stable at low levels of r2 until 
2009–2011 when it began an upward trend to reach values above 0.4, 
decaying to near zero again in 2018–2020 (Fig. 4.6). 

3.3. Variation of parameters 

With respect to the model parameters, they showed important vari
ations among archetypal cases and across time. The slope parameter was 
a sensitive indicator in registering the behaviour of the different climatic 
variables used in this study. 

All the parameters showed noticeable variations with time (Figs. 4- 
8). In most of the cases, the variations had the shape of a smooth long- 
term trend, with few variations from one time window to the next one, 
being higher than the previous credibility interval. Most of these sharp 
transitions were present in the parameters related to the Gamma 

windows’ function used to convolve the rainfall time series in the less 
seasonal archetypes (i.e. archetypes 1,3,4,6). As the major fluctuations 
were in the water-availability term of the model in some archetypes, but 
few as compared to the total number of windows (449), we assume that 
these variations corresponded mostly to changes in the vegetation dy
namics and were not an artefact of overfitting the model’s parameters. 

3.3.1. Temperature - NDVI slope 
Archetypes 1 to 4 showed stable values of the Temperature-K slope. 

The highest levels were recorded for archetypes 2 and 4 (i.e. highly 
sensitive to temperature), and the lowest level for archetype 3 (i.e. a 
marginal sensitivity to temperature). On the other hand, archetypes 5 
and 6 showed a slight trend, recording a steady increase of one order of 
magnitude and a slowly constant decrease, which means an increasing 
and decreasing sensitivity to temperature, respectively (Fig. 5). 

3.3.2. Radiation - NDVI slope 
Archetypes 6, 4 and 2 recorded an almost constant trend during the 

entire observation window. Archetype 1 increased at the beginning of 
the studied period and then remained at high values after 2003–2005, 
whereas archetype 5 decreased slightly until 2011–2013, and then 
recorded slow oscillations. Finally, archetype 3 decreased constantly 
from 2000 to 2021, which means a decreasing sensitivity to radiation of 
almost one order of magnitude (Fig. 6). 

3.3.3. Water availability - NDVI slope 
Archetypes 3, 4 and 6 recorded a slowly increasing trend until the 

end of the studied period, suggesting a progressively increasing sensi
tivity to limitations in water availability, whereas archetype 5 remained 
stable until 2016–2018 but after the said period it began to decrease 
(Fig. 7). Archetype 1 decreased slowly until 2004–2006 and remained 
near 0.1 until 2008–2010, positively recovering again until 2012–2014, 
and after these years it remained stable at high values. Archetype 2 
recorded high stable values until 2008–2010, a moment in which it 
sharply declined two orders of magnitude until 2011–2013, and after 
this period it stabilized at low values, suggesting an abrupt shift in the 
sensitivity to limitations in water availability in the second half of the 
studied period (Fig. 7). 

3.4. Rainfall-water availability convolution function 

The two parameters from the Gamma function used to convolve with 
the rainfall time series to obtain the water availability time series 
showed similar patterns, revealing that the time delay between rainfall, 
water availability peak (mean of the distribution), and the dispersal of 
the time in which the water is available (width of the distribution) were 
highly correlated (Fig. 8). However, that correlation was not constant. 
The correlation between width and delay was 0.87 (0.87, 0.88) for 
archetype 1; 0.79 (0.70, 0.86) for archetype 2; 0.86 (0.50, 0.94) for 
archetype 3; 0.44 (0.25, 0.55) for archetype 4; 0.90 (0.51, 0.92) for 
archetype 5; and 0.98 (0.96, 0.99) for archetype 6. 

The time series for archetype 1 showed that the delay and width 
transitioned sharply from several months-long of delay and width after 
2003.5–2005.5 to only ten days of delay and one-month width (Fig. 8.1). 
The transition occurred again in the opposite direction near 
2006.5–2008.5, then again near 2014.5–2016.5, and finally near 
2017–2019, ending in values near one month of delay and width 
(Fig. 8.1 and Fig. 9.1). 

For archetype 2, the variation occurred continuously without any 
sharp transition: decreasing from the beginning of the series between 
2005 and 2009, in terms of both delay (Fig. 8.2) and width (Fig. 9.2), 
and slowly increasing again until 2014–2016, remaining constant after 
those dates. 

Archetype 3 showed a combination of some sharp transitions and 
others slower and more continuous. The delay was constant until 
2008–2010, a moment in which it sharply increased from a few months 
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Fig. 3. NDVI time series and model fitted values for the six quasi-archetype pixels used in the study. The order is the same as in Table 1. The continuous blue line is 
the median estimation, and the light blue area represents 95% of the credibility interval. The dotted lines are the maximum and minimum estimations, whereas the 
orange lines are the observed time series. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Determination of linear coefficient (r2) of the estimated model on each time window for each quasi-archetype pixel. The lower x-axis is the sliding window 
starting date, and the upper x-axis is that window ending date. The continuous blue line is the median estimation, and the light blue area represents 95% of the 
credibility interval. The dotted lines are the maximum and minimum estimations. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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to nearly one year. Then, after 2011–2013, it began to slowly decrease to 
finally stabilize in values near a month after 2012–2014 (Fig. 8.3). In 
terms of width, the pattern was similar but with an additional transition 
from nearly a year to almost two months in 2005.5–2007.5. The 

decrease began in 2011–2013 and continued until 2017–2019 when 
values reached <10 days. Finally, the width began to increase again 
until stabilizing on values slightly above a month after 2018 (Fig. 9.3). 

Archetype 4 had a fairly stable delay between one and three months 

Fig. 5. The slope of the logistic function of K as a function of Temperature (T) of the estimated model on each time window for each quasi-archetype pixel. Ref
erences to the plot are the same as in Fig. 3. 
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(30 to 100 days) (Fig. 8.4). However, the width varied more strongly 
between one month to one year several times in the time series, reaching 
the minimums in 2005–2007, 2016–2018 and 2018.5–2020.5, and the 
maximums in 2007–2009 and 2009–2011 (Fig. 9.4). 

Archetype 5 was stable, averaging near 100 days or three months in 
the time series for both the delay (Fig. 8.5) and width (Fig. 9.5) vari
ables. Yet, they were the time series with wider credibility intervals most 
of the time, being several months wide. 

Fig. 6. The slope of the logistic function of K as a function of Radiation (R) of the estimated model on each time window for each quasi-archetype pixel. References to 
the plot are the same as in Fig. 3. 
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Finally, archetype 7 showed only one strong transition near 
2004.5–2006.5, from less than ten days of delay to a month, and from 
ten days to more than three months (or 100 days). After this period it 
remained stable, oscillating from one to three months of delays 
(Fig. 9.6), and from three months to a year of width (Fig. 9.6). 

3.5. Growth rate/response time scale 

The r variable measures the growth rate and, according to this model, 
it is also the inverse of the time needed to reach K at very low levels of 
NDVI through time. The r of archetype 1 decreased several orders of 

Fig. 7. The slope of the logistic function of K as a function of Water availability (W) of the estimated model on each time window for each quasi-archetype pixel. 
References to the plot are the same as in Fig. 3. 
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magnitude from the beginning to the end of the studied period. After the 
2010.5–2012.5 window it declined to very low levels (below 0.001, 
Fig. 10), which means that the ecosystem response to climate variations 
shifted from 10 days to >100 years. In a similar direction, archetypes 2 

and 4 recorded a downward trend, meaning that the ecosystem response 
to climate variations progressively amplified its delay over time. As well, 
archetype 3 recorded a similar downward pattern from 2000 until 
2011–2012, but after that an oscillatory recovery was registered, 

Fig. 8. Response delay to rainfall. Calculated from the gamma distribution function mean, which was utilized to convolve with the rainfall time series to obtain the 
water availability time series on each time window, for each quasi-archetype pixel. References to the plot are the same as in Fig. 3. 
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Fig. 9. Integration window width in the response to rainfall. Calculated from the standard deviation of the gamma distribution function, which was utilized to 
convolve with the rainfall time series to obtain the water availability time series on each time window, for each quasi-archetype pixel. References to the plot are the 
same as in Fig. 3. 
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Fig. 10. Growth rate r of Brody’s growth curve, for each quasi-archetype pixel. References to the plot are the same as in Fig. 3.  
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reaching an intermediate level. Finally, archetype 5 recorded stable 
behaviour along the entire studied period, whereas archetype 6 showed 
an oscillatory upward trend after abrupt shifts at the beginning and at 
the mid-term of the period (Fig. 10). 

4. Discussion 

We developed a procedure consisting of a combination between a 
non-autonomous ODE-based dynamical system and a Sequential Monte 
Carlo Estimation to study the vegetation temporal response—as 
measured by the NDVI series 20-year period—to temporal variations in 
climatic conditions driven by rainfall, temperature and radiation. Very 
different temporal patterns were recorded in six study cases of range
lands from North Patagonia, Argentina, which suggested sensitiveness in 
capturing changes in the climate-vegetation system. 

The time series analysis based on a posteriori estimated parameters 
distribution that connects climate with vegetation response allowed 
further understanding of the causes underlying the ecosystem response 
capacities under different circumstances. Results showed that most 
rangelands recorded changes in their sensitivity to climatic factors over 
the 20 years time frame of the study, but vegetation responses were 
heterogeneous and influenced by different drivers. For example, 
climate-vegetation relationships recorded the following patterns: (1) a 
marginal and decreasing sensitivity to temperature and radiation, 
respectively (Figs. 5.3 and 6.3), but recorded a high sensitivity to water 
availability (Fig. 7.3); (2) high and increasing sensitivity to temperature, 
radiation and water availability, respectively (Fig. 5.4, 6.4 and 7.4); and 
(3) a case with an abrupt shift in vegetation dynamics (Fig. 3.2) driven 
by a progressively reducing sensitivity to limitations in water avail
ability (Fig. 7.2), without changes in the sensitivity either to tempera
ture or radiation (Fig. 5.2 and 6.2). 

The relevance hierarchy of different climatic and environmental 
drivers and their impact on vegetation productivity over time can be 
conceptualised by following Leibig’s Law of the Minimum (Van der Valk, 
2011; Liebig et al., 1842). Under strict and linear conditions of adher
ence to this law, it might seem that results have a negative correlation 
between the slopes of the limiting variables, however, it is not the case 
(Table A1 from the appendix). According to Shelford’s Law of tolerance, 
the factors act in concert rather than in isolation, this means that some 
low levels in one variable might be compensated by higher values of 
others (Shelford, 1931). If one factor, most likely water availability, is 
too low for a certain period of time, the plants might start some drought- 
tolerance mechanism and become inactive (Volaire and Norton, 2006). 
Low temperatures also cause similar patterns, being the plants dormant 
during the cold winters with under zero temperatures (Rohde and 
Bhalerao, 2007). The plant population might become insensitive to all 
three measured variables by defect and not by excess. 

The connectivity between the climate system, ecosystem structure 
and function has long interested ecological research as it is mediated by 
a complex behaviour (e.g. Byrne et al., 2017; Foley et al., 1998; Smith 
et al., 2011). The concept of coupling was defined as the multiple ways 
in which the biotic and abiotic ecosystem components are orderly con
nected across space and/or time (Ochoa-Hueso et al., 2021). However, a 
limitation of these approaches is that coupling is estimated over the 
complete measurement interval using the same mathematical function. 
Therefore, the consequences of the advancement of global changes are 
likely to be underestimated in many conventional analyses, such as 
stationary-based models, because nonlinear, abrupt and irreversible 
responses are insufficiently considered (Higgins et al., 2002; Wolkovich 
et al., 2014). Alternative approaches such as the one presented in this 
study overcome these limitations, because they self-correct and adjust to 
new conditions and change the dynamics in terms of the parameters of 
the studied system. 

For instance, the search for breaking points or changes in vegetation 
dynamics is mostly centred on the analysis of the variation of the 
average values in the long term such as linear trends (Easdale et al., 

2018). However, sometimes a perturbation might not disrupt the mean 
but the relationship between the climate-vegetation system, either by 
slowing down or accelerating the ecosystem response (Ratajczak et al., 
2018; Schmitz, 2004) or even by promoting a decoupling of vegetation 
from the climate via a series of unpredictable random shifts. In this 
sense, the proposed approach is a promising tool since particle filter 
methods can self-tune the parameters of the model and measure the 
changes in the degree and type of climate-ecosystem relationship. 
Finally, by using this methodology, coupling can be estimated as a 
probability function, where the shifts in the ecosystem productivity 
dynamics are mediated over time by shifts in the climatic factors. 

Further research is needed to expand the application of our proposed 
approach in terms of a combination of statistical/regression and dy
namic models, with a sequential optimization technique to different 
regions and biomes. At this stage, the proposed methodology is 
encouraging as a step forward in building a bridge between the 
conceptualization of the ecosystem sensitivity to climate change (e.g. 
Byrne et al., 2017) and the underlying mechanisms of (de)coupling 
processes between climate drivers and terrestrial ecosystems (Smith 
et al., 2017). 

The local yield of terrestrial plants should be limited by the envi
ronmental factor that is present in the environment in the smallest 
amount relative to its demands for plant growth, which availability 
changes over time. We acknowledge that more tightly coupled ecosys
tems displaying higher levels of internal order may be characterised by a 
more efficient capture, transfer and storage of energy and matter 
(Ochoa-Hueso et al., 2021), and we understand that the linkages be
tween coupling/decoupling processes and the consequences of changing 
the climate-ecosystem functioning need further research. 

Indeed the approach presented here is a black-box type, so most of 
the processes underlying the changes in vegetation dynamics are hidden 
from the analysis, and for a more correct understanding of the processes, 
field measurements are needed in situ. However, our results are 
coherent with the findings in previous studies performed in the area or 
in similar ecosystems from other areas of northern Patagonia (Gaitan 
et al., 2014). Response to water availability might be related to the 
partitioning of resource usage (López et al., 2022). It is well documented 
that Walter’s (1971) two-layer hypothesis is supported in the Patago
nian ecosystems (Pelaez et al., 1994; Sala et al., 1989). That theory 
means that grasses take most of the water from the upper layers of soil, 
whereas shrubs take most of it from the lower layers. As a consequence, 
grasses and shrubs’ response times differ from the rainfall events (Gol
luscio et al., 1998). The interpretation of this water uptake could be that 
shrublands respond as a lower-pass filter compared to grasses (Lu et al., 
2003), even if the phenological curve is taken into account or if the data 
are aggregated into an annualized productivity curve. In arid and 
semiarid ecosystems —characterised by a mixture of shrubs and grass
es— the observed response using remotely sensed data has both short- 
term and long-term information. Under the influence of drought and 
after some time, the herbaceous vegetation (and all the plants that use 
the water from the upper layers of soil), might switch off from climatic 
influences, resulting in a wavy-pattern observation mostly driven by 
woody vegetation (Blanco et al., 2016; Lu et al., 2003). Therefore, the 
vegetation response to climate might be a stepped function, in which 
different ecosystem vegetation types respond differently to changes in 
climatic conditions, ultimately relying on resource availability (i.e. some 
vegetation turn off their response whereas others keep on responding). 
Hence, linear functions are not completely adequate to analyze or 
measure this kind of response (Easdale et al., 2018). However the sup
port for that hypothesis is not uniform, and in areas with non-seasonal 
rainfall as in Archetypes 1 and 6 (Figs. 2.1, 2.6, 3.1, 3.6), the observed 
data contradicts that hypothesis (Rodríguez et al., 2007), which will 
result in an even more complex pattern of on/off switching vegetation 
dynamics, as shown in the wide variation of the parameter of the 
Gamma window function (Figs. 8.1, 8.6 and 9.1, 9.6). Thus, the 
approach using non-autonomous dynamical systems on a sliding 
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window basis is much more adequate for it, as it allows evaluating when 
and how these changes may occur. 

Other approaches to the dynamics of plant population responses to 
water availability are based on the pulse-reserve hypothesis (Noy-Meir, 
1973). It states that a rain event over some value considered effective 
triggers a production response in plants and some of that primary pro
duction is used to create reserves. The Ogle and Reynolds (2004) model 
of the threshold-delay response proposed that after a rainfall above a 
certain threshold—following some delay in days—the water availability 
decays exponentially to zero, in the same way as an electrical capacitor. 
However, these approaches consider that a given plant population is 
only influenced by local rainfall events, while the availability of water 
might be dependent on both underground and superficial water move
ments (i.e. recharge, discharge and flows, depending on topography and 
geomorphology). These different water movements influence the level 
of the water table and the available groundwater in general. In the cases 
of shrubs with deep roots (e.g. cases 3 and 4, Table 1) this is the most 
important type of water resource. On the other hand, for grasses and 
other herbaceous plants that live in riparian zones or in wetland eco
systems (e.g. case 5, Table 1), water accumulates mainly by rainfall in a 
local basin. As shown in Figs. 8 and 9, all the archetypoid pixels expe
rienced changes in the delay and width of the water availability func
tions. Hence, plant populations in all of these ecosystems responded 
with mean delays that varied from few days to an entire year. These 
populations simultaneously varied the time scale of rainfall integration 
with temporal windows in the same scales as the delay, from a few days 
to years. Water availability might be further altered by the presence of 
grazing in the region, sometimes decreasing evapotranspiration (Aguiar 
et al., 1996; Bisigato and Laphitz, 2009), or increasing it (Pereyra et al., 
2017), leading to unpredictable variations as the grazing pressure in
creases or decreases, since the vegetation structure is as important as 
climate in the resulting observed dynamics (Gaitan et al., 2014). Then, 
the proposed approach provides a much better explanation of the dy
namics of a system as compared to more classical approaches using the 
same dataset but does not replace field-based measurements. Further 
studies in the field, tackling both hydrological and ecophysiological 
features of the studied rangelands, are necessary to corroborate these 
findings. 

Measuring the degree of interconnection between climate and 
vegetation dynamics has been approached by means of statistical-based 
methods such as the Granger causality (e.g. Papagiannopoulou et al., 
2017). However, these methods are too dependent on linear relation
ships and cannot dig directly into the causes of either connection or 
disconnection, so another set of statistical analyses must be performed to 
infer the causes of the observed patterns. Other non-parametric and 
nonlinear methodologies were developed such as the non-parametric 
Mann-Kendall test and Sen’s slope (Luo et al., 2020; Zuo et al., 2021), 
but share the same shortcomings as the Granger methodology when 
inferring the causes to explain patterns. The combination of the ODE- 
based model with a Sequential Monte Carlo Estimation is a procedure 
that contemplates the complex interactions among different variables, 
offering a more comprehensive understanding of the overall dynamics. 
Other approaches that resort to a single variable, without considering 
interaction with other variables, which might be seen as providing an 
easier interpretation of dynamic patterns, are too simplistic and there
fore misleading in their conclusions. We prevent simplistic explanations, 
while also avoiding excessively complex models. On one hand, the 
sliding windows allowed the model to vary its parameters according to 
some hidden process driven by different factors’ dynamics such as soil- 
water-related vegetation response, as in pulse-reserve or threshold-delay 
processes, or even plant species replacement. On the other hand, it 
simplifies the understanding of the vegetation production drivers and 
the time scales at which it occurs, without dwelling on all the details of 
the process. The algorithm fitted similarly both in high and less seasonal 
time series, recording less sensitivity with sudden or irregular pertur
bations (i.e. non climatic factors such as a volcanic ash fallout event), as 

well as irregular bumps, which appeared in some cases. An advantage 
over classical approaches using the complete time series is that the 
model can be reset after a disturbance, and therefore, it can provide a 
more comprehensive explanation of the dynamics after the event. This 
capacity is limited, however, by the width of the window and the time 
resolution of the data. As the windows are slid and overlap each other, 
the process is smoothed and a very low r2 might appear in the middle of 
the transition when the a priori estimated parameters from one window 
may not be reflective of processes that affect vegetation in the following 
one. As a result, some incoherent parameter estimations might appear in 
these stages, such as very high slopes. Hence, caution is advised in the 
interpretation of the results. Smaller windows might improve this 
aspect, but they are only possible with higher-frequency data. Never
theless, at this early stage, results are encouraging for the development 
of a regional tool aimed at informing ecosystem shifts and transitions in 
near real-time with high time resolution, which may further serve as a 
source to promote adaptive and sustainable short-medium term man
agement in the context of climate change. 

The fundamental premise that rangelands can exhibit multiple states 
as a response to internal and external factors is now widely accepted 
(Bestelmeyer et al., 2017). The State-and-Transition models (STMs) are 
well-documented conceptual models about how ecosystems respond to 
disturbances (Westoby et al., 1989). From this perspective, a negative 
transition towards an undesired state involving a degradation process 
affecting ecosystem structure and functioning has concentrated partic
ular research interest (López et al., 2011). Whereas ecosystem regime 
shifts are long-term system reorganizations, they may have profound 
implications for sustainability (Karunanithi et al., 2008). The identifi
cation of environmental drivers of a regime shift is complicated due to 
the complex interactions (Andersen et al., 2009). For instance, the ex
istence of alternative stable states (or regimes) in climate and ecosys
tems of vast regions such as the Sahara and Sahel were recorded as the 
result of strong, nonlinear interactions between vegetation and the at
mosphere in a historical timeframe (Foley et al., 2003). However, eco
systems may experience abrupt shifts towards another regime in a 
period of human observations (Zaldívar et al., 2008) for which the 
changes become irreversible in the medium term. Our results show that 
archetype 2 recorded a transition from a highly seasonal and productive 
ecosystem to low production and noisy dynamics, suggesting a transi
tion towards another state (Fig. 2). A temporary improvement in the 
climatic conditions by means of a wetter cycle was not enough to recover 
the previous state dynamics. The model identified that this abrupt shift 
occurred as a consequence of the ecosystem’s loss of sensitivity to water 
availability (Fig. 6), but not to temperature (Fig. 4). 

The approach based on non-autonomous dynamical systems com
bined with SME provides the quantitative tools needed to move forward 
with the usage of remote sensing and field data, both integrated under 
the STM for rangeland management. For instance, it can help in iden
tifying the moment in which the observed transition between states 
occurs (i.e. in terms of vegetation activity or other remotely sensed 
variable of the used time series), and to identify the main drivers pro
moting the shift in terrestrial ecosystems (Fig. 7.2). Up until now, the 
identification of transitions was mostly performed by time-series 
breakpoint detection methods (de Jong et al., 2011; Forkel et al., 
2013) which are limited to only detecting abrupt variations in the mean 
(used as a proxy of state). Alternatively, the usage of wavelets provides 
better opportunities to detect changes in the frequency components of 
ecological time series (Bruzzone and Easdale, 2021; Easdale and Bruz
zone, 2018; Easdale and Bruzzone, 2018; Martínez and Gilabert, 2009), 
even in the presence of a constant mean. Both approaches, however, still 
lack the explanatory variables needed to understand the nature of these 
changes. Our approach attempts to move a step forward in filling the gap 
in the relationship between climatic measurements and the changes in 
the vegetation dynamics regime, and its temporal response to climatic 
drivers. 
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5. Conclusions 

The combination of simple non-autonomous ODE models and 
Sequential Monte Carlo Estimation was used to develop a model that 
provides novel information about climate and vegetation dynamics. As 
compared with other methods, the proposed model provides more 
detailed information and has a higher temporal resolution on the studied 
interaction. More importantly, it provides a sound understanding of how 
vegetation changes over time, as a consequence of shifts in different 
climate drivers, by means of the time series inspection of the models’ 
parameters a posteriori distribution, in absence of reliable field data, 
which are needed to parameterize a water balance in the model. Given 
that the climate-vegetation relationship is more complex than the basic 
ODE model is able to capture, the use of sliding windows allowed the 
model to vary its parameters according to some hidden process dy
namics (e.g. in relation to soil moisture or different vegetation lags, by 

vegetation type or differences in species composition). Consequently, 
the integrated tool showed sensitivity to capture changes over time in 
the climate-vegetation relationship system. Indeed, whereas this is a first 
step towards the development of future models that attempt to better 
capture the variation of the parameters, its current configuration is a 
novel source of inspiring hypotheses of the ecosystem response to 
changes in climatic conditions in different regions worldwide, which 
needs to be tested and complemented with field data. 

Declaration of Competing Interest 

None. 

Data availability 

Data will be made available on request.  

Appendix A. Appendix

Fig. A1 30-days (A) and Annual (B) moving averages of temperature the six studied quasi-archetype pixels. Source of data: ERA5 reanalysis data set (Herbach 
et al., 2020).  
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Fig. A2 30-days (A) and Annual (B) moving averages of radiation the six studied quasi-archetype pixels. Source of data: ERA5 reanalysis data set (Herbach 
et al., 2020). 

Fig. A3 30-days (A) and Annual (B) moving averages of rainfall the six studied quasi-archetype pixels. Source of data: ERA5 reanalysis data set (Herbach et al., 2020).   

Table A1: Correlation table for variables of all the archetypoids, rows in bold are the pairs of variables with strictly behave 
as expected by Liebig’s law of the minimum, that is they have a negative correlation in their slope, so when a variable 
stops being limiting, and therefore their slope decreases, the other began limiting, and so their slope increases.  

Variables Median CI 95% 

Archetypoid 1 
Temperature slope Radiation Slope 0.0865 − 0.0336, 0.3605 
Temperature slope Rainfall Slope 0.0757 0.0568, 0.1541 
Temperature slope r − 0.1347 − 0.4473, − 0.3015 
Radiation Slope Rainfall Slope 0.4683 0.4017, 0.4924 

(continued on next page) 
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(continued ) 

Variables Median CI 95% 

Radiation Slope r − 0.8062 − 0.8152, − 0.6515 
Rainfall Slope r − 0.5856 − 0.5938, − 0.5338  

Archetypoid 2 
Temperature slope Radiation Slope ¡0.4383 ¡0.5224, ¡0.0244 
Temperature slope Rainfall Slope 0.2344 0.1867, 0.4452 
Temperature slope r − 0.0200 − 0.3132, 0.1746 
Radiation Slope Rainfall Slope ¡0.5367 ¡0.6220, ¡0.1415 
Radiation Slope r − 0.5467 − 0.6152, − 0.4482 
Rainfall Slope r 0.8381 0.3861, 0.8707  

Archetypoid 3 
Temperature slope Radiation Slope − 0.1814 − 0.3089, 0.3296 
Temperature slope Rainfall Slope − 0.0075 − 0.3281, 0.1923 
Temperature slope r − 0.4650 − 0.5569, 0.4349 
Radiation Slope Rainfall Slope ¡0.8001 ¡0.8118, ¡0.6978 
Radiation Slope r 0.8786 0.8321, 0.9067 
Rainfall Slope r − 0.7841 − 0.8192, − 0.7070  

Archetypoid 4 
Temperature slope Radiation Slope − 0.0708 − 0.1148, 0.0094 
Temperature slope Rainfall Slope 0.4317 0.3888, 0.4461 
Temperature slope r − 0.2912 − 0.5237, − 0.1610 
Radiation Slope Rainfall Slope ¡0.4762 ¡0.5019, ¡0.4534 
Radiation Slope r − 0.0204 − 0.0279, − 0.0048 
Rainfall Slope r − 0.4756 − 0.4836, − 0.4522  

Archetypoid 5 
Temperature slope Radiation Slope − 0.0120 − 0.0256, 0.0116 
Temperature slope Rainfall Slope ¡0.6932 ¡0.8746, ¡0.4019 
Temperature slope r − 0.0014 − 0.0076, 0.0081 
Radiation Slope Rainfall Slope ¡0.1720 ¡0.2854, ¡0.0586 
Radiation Slope r 0.4190 0.3192, 0.4826 
Rainfall Slope r − 0.2782 − 0.2920, − 0.1967  

Archetypoid 6 
Temperature slope Radiation Slope ¡0.3613 ¡0.4182, ¡0.0951 
Temperature slope Rainfall Slope ¡0.5819 ¡0.5943, ¡0.5732 
Temperature slope r 0.1299 0.1144, 0.1745 
Radiation Slope Rainfall Slope 0.4359 0.2330, 0.4732 
Radiation Slope r 0.1402 0.0431, 0.2029 
Rainfall Slope r − 0.0094 − 0.0115, 0.0036  

References 

Aguiar, M.R., Paruelo, J.M., Sala, O.E., Lauenroth, W.K., 1996. Ecosystem responses to 
changes in plant functional type composition: an example from the Patagonian 
steppe. J. Veg. Sci. 7 (3), 381–390. 

Andersen, T., Carstensen, J., Hernandez-Garcia, E., Duarte, C.M., 2009. Ecological 
thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24 (1), 
49–57. 

Arnell, N.W., Lloyd-Hughes, B., 2014. The global-scale impacts of climate change on 
water resources and flooding under new climate and socio-economic scenarios. Clim. 
Chang. 122 (1), 127–140. 

Bain, L.J., Engelhardt, M., 1992. Introduction to Probability and Mathematical Statistics. 
Duxbury Press, Belmont, CA.  

Baranyi, J., Roberts, T.A., McClure, P., 1993a. Some properties of a nonautonomous 
deterministic growth model describing the adjustment of the bacterial population to 
a new environment. Math. Med. Biol.: A J. IMA 10 (4), 293–299. 

Baranyi, J., Roberts, T.A., McClure, P., 1993b. A non-autonomous differential equation to 
model bacterial growth. Food Microbiol. 10 (1), 43–59. 

Besbes, M., De Marsily, G., 1984. From infiltration to recharge: use of a parametric 
transfer function. J. Hydrol. 74 (3–4), 271–293. 

Bestelmeyer, B.T., Ash, A., Brown, J.R., Densambuu, B., Fernández-Giménez, M., 
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