Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Mendoza - San JuanEEA MendozaArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros Regionales y EEAs
  • Centro Regional Mendoza - San Juan
  • EEA Mendoza
  • Artículos científicos
  • View Item

Grapevine morphological shade acclimation is mediated by light quality whereas hydraulic shade acclimation is mediated by light intensity

Abstract
Plants acclimate to shade by sensing light signals such as low photosynthetic active radiation (PAR), low blue light (BL) levels and low red-to-far red ratios (R:FR) trough plant photoreceptors cross talk. We previously demonstrated that grapevine is irresponsive to variations in R:FR and that BL-attenuation mediates morphological and architectural responses to shade increasing light interception and absorption efficiencies. However, we wondered if [ver mas...]
Plants acclimate to shade by sensing light signals such as low photosynthetic active radiation (PAR), low blue light (BL) levels and low red-to-far red ratios (R:FR) trough plant photoreceptors cross talk. We previously demonstrated that grapevine is irresponsive to variations in R:FR and that BL-attenuation mediates morphological and architectural responses to shade increasing light interception and absorption efficiencies. However, we wondered if grapevine respond to low R:FR when BL is attenuated at the same time. Our objective was to evaluate if morphological, architectural and hydraulic acclimation to shade is mediated by low R:FR ratios and BL attenuation. To test this, we carried out experiments under natural radiation, manipulating light quality by selective sunlight exclusion and light supplementation. We grew grapevines under low PAR (LP) and four high PAR (HP) treatments: HP, HP plus FR supplementation (HP + FR), HP with BL attenuation (HP–B) and HP with BL attenuation plus FR supplementation (HP–B + FR). We found that plants grown under HP-B and HP-B + FR had similar morphological (stem and petiole length, leaf thickness and area), architectural (laminae’ angles) and anatomical (stomatal density) traits than plants grown under LP. However, only LP plants presented lower stomata differentiation, lower δ13C and hence lower water use efficiency. Therefore, even under a BL and R:FR attenuated environment, morphological and architectural responses were modulated by BL but not by variation in R:FR. Meanwhile water relations were affected by PAR intensity but not by changes in light quality. Knowing grapevine responses to light quantity and quality are indispensable to adopt tools or design new cultural management practices that manipulate irradiance in the field intending to improve crop performance. [Cerrar]
Thumbnail
Author
Gonzalez, Carina Veronica;   Prieto, Jorge Alejandro;   Mazza, Carlos Alberto;   Jeréz, Damián Nicolás;   Biruk, Lucía Nadia;   Jofre, María Florencia;   Giordano, Carla Valeria;  
Fuente
Plant Science 307 : 110893 (June 2021)
Date
2021-06
Editorial
Elsevier
ISSN
0168-9452
URI
http://hdl.handle.net/20.500.12123/9005
https://www.sciencedirect.com/science/article/abs/pii/S0168945221000844
DOI
https://doi.org/10.1016/j.plantsci.2021.110893
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Vid; Grapevines; Vitis vinifera; Fotosíntesis; Photosynthesis; Eficacia en el Uso del Agua; Water Use Efficiency; Luz; Light;
Derechos de acceso
Abierto
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record