Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • English 
    • español
    • English
  • Login
AboutAuthorsTitlesSubjectsCollectionsCommunities☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA PergaminoArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • DSpace Home
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Norte
  • EEA Pergamino
  • Artículos científicos
  • View Item

FT-IR and untargeted chemometric analysis for adulterant detection in chia and sesame oils

Abstract
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the [ver mas...]
Chia (Salvia hispanica L.) and sesame (Sesamum indicum L.) oils are valorized for their health benefits and both are extensively used as ingredients in different food formulations and/or processes. Their retail prices are higher than those of other edible oils and might promote fraudulent adulterations. Spectroscopic methods associated to untargeted analysis are appropriate and faster than traditional techniques, requiring less time to prepare and run the samples. In the present study Fourier transform infrared spectroscopy was used in combination with one class partial least squares and soft independent modelling by class analogy to detect the presence of four possible adulterants: corn, peanut, soybean and sunflower oils, in four different proportions (pure + adulterant: 90 + 10, 95 + 5, 98 + 2 and 99 + 1, in volume). Untargeted approaches were successful in the detection of adulterated chia and sesame oils with acceptable prediction errors ranging between 1% and 5%. [Cerrar]
Thumbnail
Author
Rodríguez, Silvio David;   Gagneten, Maite;   Farroni, Abel Eduardo;   Percibaldi, Nora Mabel;   Buera, María del Pilar;  
Fuente
Food Control 105 : 78-85 (November 2019)
Date
2019-05
Editorial
Elsevier
ISSN
0956-7135 (digital)
URI
https://www.sciencedirect.com/science/article/pii/S0956713519302336
http://hdl.handle.net/20.500.12123/5224
DOI
https://doi.org/10.1016/j.foodcont.2019.05.025
Formato
pdf
Tipo de documento
artículo
Palabras Claves
Calidad de los Alimentos; Food Quality; Salvia (género); Salvia; Aceite de Sésamo; Sesame Oil; Adulteración de Alimentos; Food Adulteration; Análisis; Analysis; Análisis no dirigido; Aceite de chía;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadata
Show full item record