Facebook
Twitter
YouTube
Instagram
    • español
    • English
  • Contacto
  • español 
    • español
    • English
  • Mi Cuenta
Acerca deAutoresTítulosTemasColeccionesComunidades☰
JavaScript is disabled for your browser. Some features of this site may not work without it.
Ver ítem 
    xmlui.general.dspace_homeCentros Regionales y EEAsCentro Regional Buenos Aires NorteEEA PergaminoArtículos científicosxmlui.ArtifactBrowser.ItemViewer.trail
  • Inicio
  • Centros Regionales y EEAs
  • Centro Regional Buenos Aires Norte
  • EEA Pergamino
  • Artículos científicos
  • Ver ítem

Relative performance of cluster algorithms and validation indices in maize genome-wide structure patterns

Resumen
A number of clustering algorithms are available to depict population genetic structure (PGS) with genomic data; however, there is no consensus on which methods are the best performing ones. We conducted a simulation study of three PGS scenarios with subpopulations k = 2, 5 and 10, recreating several maize genomes as a model to: (1) compare three well-known clustering methods: UPGMA, k-means and, Bayesian method (BM); (2) asses four internal validation [ver mas...]
A number of clustering algorithms are available to depict population genetic structure (PGS) with genomic data; however, there is no consensus on which methods are the best performing ones. We conducted a simulation study of three PGS scenarios with subpopulations k = 2, 5 and 10, recreating several maize genomes as a model to: (1) compare three well-known clustering methods: UPGMA, k-means and, Bayesian method (BM); (2) asses four internal validation indices: CH, Connectivity, Dunn and Silhouette, to determine the reliable number of groups defining a PGS; and (3) estimate the misclassification rate for each validation index. Moreover, a publicly available maize dataset was used to illustrate the outcomes of our simulation. BM was the best method to classify individuals in all tested scenarios, without assignment errors. Conversely, UPGMA was the method with the highest misclassification rate. In scenarios with 5 and 10 subpopulations, CH and Connectivity indices had the maximum underestimation of group number for all cluster algorithms. Dunn and Silhouette indices showed the best performance with BM. Nevertheless, since Silhouette measures the degree of confidence in cluster assignment, and BM measures the probability of cluster membership, these results should be considered with caution. In this study we found that BM showed to be efficient to depict the PGS in both simulated and real maize datasets. This study offers a robust alternative to unveil the existing PGS, thereby facilitating population studies and breeding strategies in maize programs. Moreover, the present findings may have implications for other crop species. [Cerrar]
Thumbnail
Autor
Videla, María Eugenia;   Iglesias, Juliana;   Bruno, Cecilia Inés;  
Fuente
Euphytica 217 (10) : 195 (October 2021)
Fecha
2021-09
Editorial
Springer Nature
ISSN
1573-5060 (online)
0014-2336
URI
http://hdl.handle.net/20.500.12123/11153
https://link.springer.com/article/10.1007/s10681-021-02926-5
DOI
https://doi.org/10.1007/s10681-021-02926-5
Documentos Relacionados
Formato
pdf
Tipo de documento
artículo
Proyectos (ver más)

INTA/2019-PE-E6-I114-001/2019-PE-E6-I114-001/AR./Caracterización de la diversidad genética de plantas, animales y microorganismos mediante herramientas de genómica aplicada.

Palabras Claves
Maíz; Maize; Genética de Poblaciones; Population Genetics; Genomas; Genomes; Mejoramiento Genético; Genetic Improvement; Unsupervised Learning; Population Genetic Structure; Multivariate Technique; Outcome Misclassification;
Derechos de acceso
Restringido
Descargar
Compartir
  • Compartir
    Facebook Email Twitter Mendeley
Excepto donde se diga explicitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Metadatos
Mostrar el registro completo del ítem