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Abstract: Systematic measurement of pasture biomass (kg DM/ha) is crucial for optimising pasture
utilisation and increasing dairy farm profitability. On-farm pasture monitoring can be conducted
using various sensors, but calibrations are necessary to convert the measured variable into pasture
biomass. In this study, we conducted three experiments in New South Wales (Australia) to evaluate
the use of the rising plate meter (RPM), pasture reader (PR), unmanned aerial vehicles (UAV) and
satellites as pasture monitoring tools. We tested various calibration methods that can improve the ac-
curacy of the estimations and be implemented more easily on-farm. The results indicate that UAV and
satellite-derived reflectance indices (e.g., Normalised Difference Vegetation Index) can be indirectly
calibrated with height measurements obtained from an RPM or PR. Height measurements can be
then converted into pasture biomass ideally by conducting site-specific sporadic calibrations cuts. For
satellites, using the average of the entire paddock, root mean square error (RMSE) = 226 kg DM/ha
for kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and 347 kg DM/ha for ryegrass (Lolium
multiflorum L.) is as effective as but easier than matching NDVI pixels with height measurement
using a Global Navigation Satellite System (RMSE = 227 kg DM/ha for kikuyu and 406 kg DM/ha
for ryegrass). For situations where no satellite images are available for the same date, the average
of all images available within a range of up to four days from the day ground measurements were
taken could be used (RMSE = 225 kg DM/ha for kikuyu and 402 kg DM/ha for ryegrass). These
methodologies aim to develop more practical and easier-to-implement calibrations to improve the
accuracy of the predictive models in commercial farms. However, more research is still needed to test
these hypotheses under extended periods, locations, and pasture species.

Keywords: automation; productivity; calibration; Australia; grazing management

1. Introduction

A key driver of farm profitability in pasture-based dairy systems is the amount of
pasture utilised or ingested and converted into milk, which is expressed in kg or t per
hectare and per year [1–3]. The average pasture utilisation on commercial dairy farms
in Australia is ~7 t DM/ha, which is only one-third of the potential achieved under
experimental conditions with irrigation [4–6]. Accurate, systematic and timely information
on pasture biomass and growth rate is critical to achieving optimum pasture allocation
and could increase current milk production by ~10% by utilising pasture that would
otherwise be wasted [7]. However, in practice, most dairy farmers only conduct rapid
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visual assessments during their daily farm activities instead of using a standardised and
regular method to monitor pasture availability [8,9].

Direct cutting and weighing of pasture using a quadrat is widely considered the
most accurate method for measuring pasture biomass. However, this approach can be
time-consuming, destructive, and requires multiple samples to account for paddock vari-
ability [10]. As a result, farmers may prefer to use indirect ground-based methods such
as the rising plate meter (RPM) or the electronic pasture reader (PR) as more convenient
options [11,12]. Although some regions of Australia and New Zealand report adoption
rates of 32–42% for the RPM and 10–11% for the PR [8,13], these figures are likely to be
lower on average [9]. The RPM is generally more popular due to its lower cost and high ac-
curacy when used correctly (70 readings in a relatively homogenous paddock are required
to achieve a 5% error in the estimations). However, it still requires a significant amount
of labour from an operator who must walk the paddocks. For instance, walking a typical
dairy farm of around 150 hectares with an RPM could take between 3 and 6 h [14,15], while
using a PR could take approximately 1.25 h [16]. Additionally, the collected data often
require further processing depending on the device’s level of automation, adding to the
time and effort required beyond the initial measurement.

The use of unmanned aerial vehicles (UAV) can offer high-resolution data of the entire
farm, which can be employed to monitor pasture growth, morphology, digestibility and
plant health [17,18]. Although UAVs can reduce the amount of labour required compared
to ground-based methods, conducting flights and downloading and processing images can
still be time-consuming, especially in large farms. The reliability can also be impacted by
weather conditions, especially wind and rain [19,20]. On the other hand, satellite remote
sensing is currently seen as the most attractive option to systematically monitor large
areas of pasture [21]. Satellites can offer relatively low-cost, high-resolution data with very
little associated labour. However, this technology also presents limitations associated with
weather conditions (e.g., high cloud cover) or spatial and temporal resolution, which might
not be adequate to provide timely and accurate information to farmers [22,23].

In order to achieve accurate measurements of pasture biomass, calibration is necessary
regardless of the chosen method or technology. However, the calibration process itself
can introduce significant errors [24,25]. Traditionally, local pasture cuts have been used
to calibrate these tools, but this method is labour-intensive and time-consuming [10].
Alternatively, standard calibration equations provided by the manufacturer or published
in the literature can be used. However, these equations are neither locally developed nor
account for factors such as season and pasture species, leading to increased prediction
errors [11,26].

Another option, particularly convenient for optical sensors, is to calibrate them indi-
rectly using ground-based measurements obtained from another tool such as the RPM or
PR [27]. This indirect calibration approach was successfully evaluated by Flynn [28] for
a hand-held device that measured the Normalised Difference Vegetation Index (NDVI),
although the performance was lower compared to a calibration against pasture cuts. It
is worth noting that the effectiveness of this approach could vary when using satellites
or UAVs, as spatial resolution, temporal resolution, and positioning inaccuracies can all
impact the measurements. The calibration of satellite-derived data using an RPM was
explored in short-term study by Gargiulo et al. [15].

For farmers to adopt pasture monitoring technologies on a large scale, it is important
to understand the factors that affect their reliability. This includes evaluating the accuracy
of measurements from different sensors (manual, ground-based, aerial, satellite) across
various pasture types and seasons. Another critical area of focus is improving calibration
methods. Traditional calibration techniques are not feasible for commercial farms, so it
is necessary to explore more practical and accessible calibration options. However, no
studies have yet examined the differences between direct and indirect calibration methods
or the impact of scale (paddock, transect, quadrat) on satellite or UAV-derived data. Our
hypothesis is that accurate pasture biomass estimates can be obtained from reflectance
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data captured through any sensor, provided they are properly calibrated, and that practical
calibration methods can offer sufficient accuracy to promote adoption on commercial farms.
To achieve this goal, our study aims to evaluate (i) different ground-based sensors, UAVs,
and satellites to monitor pasture biomass accurately as well as (ii) different calibration
methods that can be easily implemented on-farm to enhance the accuracy of pasture
biomass estimations.

2. Materials and Methods

The following section provides a comprehensive description of the three experiments
undertaken in this study. Table 1 provides a summary of the experiments, including the
general objectives, specific questions addressed and sensors evaluated, as well as the dates
and locations of the experiments.

Table 1. Summary of the three experiments conducted in this study.

Experiment 1 (E1) Experiment 2 (E2) Experiment 3 (E3)

Key objectives of
the experiment

Calibration methodology
Calibration methodology

Calibration methodologyPaddock variability
evalu-ation

Platforms and Sensors used 1 RPM, Automatic PR, UAV 2 Automatic PR, UAV C-Dax PR, SAT

Reflectance indices evaluated NDVI, NDRE NDVI NDVI

Specific questions addressed

Which of the above tools
provides more accurate

estimates of above-ground
pasture biomass at a

particular point (i.e., quadrat
sites where the pasture was

cut and weighted)?

Which of the above tools
provides more accurate

estimates of above-ground
pasture biomass over a given
area (i.e., transect)? Can this
method be used to estimate

inter (and intra) paddock
variability?

What are the differences in
accuracy between calibration

scale (transect or paddock)
and pasture species for

satellite-based measurements?
What are the differences
between using images

acquired on the same date as
the ground measurements

versus an average of images
available up to +/− 4 days?

Duration of the experiment Short-term (3 weeks) Medium-term (8 weeks) Long-term (1 year)

Location Camden (NSW) Taree (NSW) Tocal (NSW)

Pasture type Annual ryegrass Annual ryegrass Annual ryegrass-Kikuyu

Calibration type 3 Direct Direct–Indirect Indirect

Calibration Scale 4 Quadrat Transect Transect–Paddock
1 RPM = rising plate meter; PR = pasture reader; UAV = unmanned aerial vehicle; SAT = Planet satellite.
NDVI = Normalised Difference Vegetation Index, NDRE = Normalised Difference Red-Edge. 2 The UAV was
fixed to an arm and used as a ground-based sensor to eliminate errors associated with the positioning system.
NSW = New South Wales (Australia). 3 Direct = pasture cuts conducted to calibrate the sensors; Indirect = no
pasture cuts conducted, the sensor was calibrated using another sensor (e.g., satellite calibrated using pasture
height obtained from a PR). 4 Quadrat = calibrations conducted in a quadrat of 0.25 m2; Transect = calibrations
conducted in transects or rows, instead of quadrat; Paddock = calibrations obtained from measurements from the
whole paddock.

2.1. Experiment 1 (E1)

The aim of this short-term study (three weeks) was to evaluate different calibration
methods for estimating pasture biomass at a quadrat scale. Specifically, we compared the
accuracy of calibration equations derived between pasture biomass and the measurements
obtained from either a RPM, a PR or a UAV (using two vegetation indices, NDVI and
NDRE). Direct calibration refers to a sensor calibrated with pasture cuts; quadrat scale
refers to measurements taken from a quadrat.
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2.1.1. Site and Experimental Design

The experiment was conducted from 13 September to 27 September 2018 at The Univer-
sity of Sydney’s dairy farm ‘Corstorphine’, located in Camden, NSW, Australia (34◦01′44′′S,
150◦38′54′′E). We used a sector of a paddock sown with annual ryegrass (Lolium multiflorum
L.) pasture with similar characteristics, covering approximately 1.0 ha (Figure 1).
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Figure 1. Location of the three experiments conducted in New South Wales (NSW), Australia.
Experiment 1 (E1) was located at ‘Corstorphine’ dairy farm in Camden; Experiment 2 (E2) on a
commercial dairy farm in Taree, and Experiment 3 at Tocal College dairy farm in Tocal. Maps were
created using R software version 4.1.2 (R Foundation, Indianapolis, IN, USA).

2.1.2. Data Collection

In this experiment, we selected sectors of the paddock with visually contrasting
pasture availability (high, medium, and low) and obtained 12 measurements over three
consecutive weeks using a 0.25 m2 quadrat. We used a MicaSense Red Edge camera
(https://micasense.com/) (MicaSense, Seattle, WA, USA) mounted on a DJI Phantom
4 UAV (DJI, Shenzhen, China) to obtain multispectral images. This camera senses five
spectral bands (red, green, blue, near infrared (NIR) and red-edge). We mounted the
UAV on a quad bike with an arm and used it as a ground-based sensor (1.5 m height) to
capture a precise image of the quadrat, eliminating any inaccuracies associated with the
UAV positioning system. At this height, the spatial resolution of the images is less than
1 mm. To ensure optimal image quality, we followed the manufacturer’s recommendations,
which included the use of a reflectance panel to compensate for lighting conditions during
image capture.

To measure pasture height, we used an ‘Automatic’ PR device (http://pasturereader.
com.au/) (Naroaka Enterprises, Narracan, VIC, Australia), which comprises an ultrasonic
sensor mounted on a quad bike. Additionally, we measured compressed pasture height (in
0.5 cm height units) using a Jenquip RPM EC20 (https://jenquip.nz) (Jenquip, Feilding,

https://micasense.com/
http://pasturereader.com.au/
http://pasturereader.com.au/
https://jenquip.nz
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New Zealand). The RPM consists of a handle and a plate that slides over a shaft, which is
placed over the canopy to measure the height of the compressed pasture material between
the plate and the ground. After completing all measurements, pasture material in the
quadrat was cut as close as possible to ground level (while avoiding soil contamination),
weighed in the paddock, and oven-dried at 80 ◦C to determine dry matter content and
pasture biomass (in kg DM/ha). This methodology was referred to as ‘direct calibration at
a quadrat scale’.

2.1.3. Data Processing and Statistical Analysis

Data processing and statistical analysis were conducted using R software version 4.1.2
(www.r-project.org/). We processed images to calculate the NDVI and the Normalised
Difference Red Edge (NDRE) [29,30]. The NDRE is more sensitive than the NDVI at higher
biomass levels, and it can only be calculated if the red edge band is available, which is a
key feature of the MicaSense camera. For comparative analysis, regression equations were
fitted between pasture biomass and the variable measured from each sensor (RPM, PR, and
the UAV). The coefficient of determination (R2) was used to test the regressions comparing
observations pooled together and per date.

2.2. Experiment 2 (E2)

Experiment 2 aimed to evaluate the accuracy of direct and indirect calibration method-
ologies at a transect scale for the UAV and the PR over eight weeks (medium term). The
study also aimed to assess the potential of these methodologies to detect variability in pas-
ture biomass, which was artificially increased by nitrogen fertilisation. Indirect calibration
involves using another sensor (such as a PR) to calibrate the UAV. Unlike the quadrat scale
used in Experiment 1, the transect scale involved taking measurements from a strip or line.

2.2.1. Site and Experimental Design

This experiment was conducted on a commercial dairy farm located in Taree, NSW,
Australia (31◦53′37′′S, 152◦34′23′′E) from 9 August to 25 September 2018 (Figure 1). We
selected a paddock sown with annual ryegrass and assigned three nitrogen fertilisation
treatments (30, 60, and 90 kg N/ha) to different sectors of the paddock (Figure 2). The
nitrogen fertiliser was applied on the day of grazing (13 August). For the analysis, we used
only a homogenous sector of the paddock, covering an area of 4.7 hectares.
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2.2.2. Data Collection

We collected pasture height and position data from the entire 4.7 ha paddock, every
seven days, using a PR device integrated with a Global Navigation Satellite System (GNSS)
receiver. On average, 264 height and location observations were recorded per date. On
the same dates, we obtained UAV images using a DJI Phantom 4 mounted with a Sentera
NIR camera that captures red, green, blue and NIR spectral bands (https://sentera.com/).
The UAV flights were conducted at an altitude of 100 m, with an image overlap of 80%
and a spatial resolution of 11 cm. For the calibrations, we measured thirty-two transects of
6.4 m2 (13 × 0.49 m) on two dates (14 and 26 September). Each calibration sample involved
collecting PR data, extracting UAV reflectance values using the associated PR location, and
conducting pasture cuts to calculate DM and pasture biomass. This method was referred to
as ‘direct calibration at a transect scale’.

2.2.3. Data Processing and Statistical Analysis

Images were stitched using Pix4D software (Prilly, Switzerland), and data were pro-
cessed and analysed using R software. To calculate the NDVI from the UAV images, we
followed the instructions provided by the manufacturer. We used direct calibration mea-
surements at a transect scale (Figure 3a) to derive equations between the PR and UAV
and pasture biomass. For the PR, we fitted a calibration equation using observations from
both calibration dates pooled together, while for the UAV NDVI, we derived two equa-
tions (one for each date), since they had a better R2 value (refer to figures in the results in
Section 3.2.1). In addition, we tested an indirect calibration methodology at a transect scale
for the UAV, which was based on the NDVI and PR measurements from all eight dates. To
do this, we first converted each PR observation to pasture biomass and then extracted the
corresponding NDVI value from the images (as shown in Figure 3a). We then developed a
single calibration equation based on the average NDVI and biomass values for each date
and nitrogen fertilisation treatment (i.e., a total of 24 calibration points).
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Moreover, we utilised the obtained calibration equations to transform all PR height
and NDVI observations (gathered from the eight dates and each treatment) into pasture
biomass. We used these data to construct cumulative pasture biomass curves for each
treatment and calibration methodology. Subsequently, we employed a linear model with
time and treatment as factors to assess the sensors’ capacity to identify differences in
pasture biomass between treatments. The interaction between week and treatment was also
analysed. We performed these models for NDVI, height, and pasture biomass estimated
using all calibration methods presented, including both direct and indirect calibrations at a
transect scale.

2.3. Experiment 3 (E3)

The primary goal of this long-term experiment (1 year) was to evaluate the accuracy
of an indirect calibration methodology at a transect and paddock scale (satellite-derived
data) for different pasture species. Paddock scale refers to measurements obtained from
the entire paddock area. Additionally, the experiment aimed to evaluate the differences
between using satellite images acquired on the same date of ground measurement versus
utilising the average of images available up to four days of acquisition date.

2.3.1. Site and Experimental Design

We conducted this experiment at the Tocal College Dairy Farm in Tocal, NSW, Australia
(32◦37′58′′S, 151◦35′57′′E) between January 2020 and January 2021 (Figure 1). This farm
primarily grows kikuyu (Pennisetum clandestinum Hochst. ex Chiov) and oversows it
with a short rotation ryegrass each autumn. For the experiment, we selected six irrigated
paddocks, each covering 4.8 hectares, resulting in a total study area of 29 hectares.

2.3.2. Data Collection

Weekly pasture height measurements were collected using a ‘C-Dax’ PR (http://
www.c-dax.co.nz) towed by a quad bike equipped with a GNSS system to record location
information. The ‘C-Dax’ PR uses a two-sided sensor with light beam emitters to detect
relative height when any light paths between the two sides are interrupted. On average, we
collected 520 PR height and location observations per paddock per date. In this experiment,
we used satellite imagery obtained from Planet Labs Inc. (San Francisco, CA, USA) through
the Planet’s Education Research Program [31]. We used ‘PlanetScope Analytic Ortho Tile’
images that include four spectral bands (red, green, blue, NIR) with a spatial resolution of
3.7 m and a revisit time of 1 or 2 days subject to variation based on location and atmospheric
conditions [32]. In this study, a total of 75 images were cloud-free and available for use,
representing an average of 1 image every 5.2 days.

2.3.3. Data Processing and Statistical Analysis

We tested various calibration methodologies for both kikuyu and ryegrass pastures
using the PR and satellite-derived NDVI data. Unlike E1 and E2, this experiment did not
involve direct calibration cuts. Instead, we indirectly calibrated the NDVI using the PR
height. To achieve this, we utilised the standard equation (kg DM/ha = pasture height
× 18.6 + 750) provided by the manufacturer to convert pasture height into biomass [33].
To develop the indirect calibration curves, we first selected satellite images that had PR
readings on the same date of acquisition (0 d). Then, we performed the first comparison
using either the NDVI values extracted from the pixels associated with the PR position
(transect scale) (Figure 3a) or the NDVI and the average biomass values for the whole
paddock (paddock scale) (Figure 3b). Since acquiring images on the exact date of PR
measurements could be difficult due to temporal resolution or atmospheric conditions,
we compared each method (i.e., indirect calibration at a transect or paddock scale, 0 d)
with calibration curves derived from using the average of all satellite images available
within ± one (1 d), two (2 d), three (3 d) and four (4 d) days from the PR measurement.

http://www.c-dax.co.nz
http://www.c-dax.co.nz
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3. Results
3.1. Experiment 1

The direct calibrations between pasture biomass (kg DM/ha) and NDVI, NDRE,
height (using a PR), or compressed height (using a RPM) at a quadrat scale are presented in
Figure 4. The RPM demonstrated a stronger association with pasture biomass compared to
the PR, NDVI, and NDRE (R2 0.86, 0.64, 0.54, 0.44, respectively). The PR, NDVI, and NDRE
had moderate to high R2 values (above 0.70), and regressions were statistically significant
(p < 0.05) for the first two sampling dates, but for the last date, the R2 was relatively low
and the regressions were not significant (p > 0.05). Overall, the NDVI exhibited a higher R2

than the NDRE across all evaluated dates.
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Figure 4. Calibration equations for converting Normalised Difference Vegetation Index (NDVI) (•),
Normalised Difference Red Edge (NDRE) (•), pasture reader (PR) height (•), or rising plate meter
(RPM) compressed height (•) into pasture biomass (kg DM/ha). In (a), observations were polled
together and in (b), observations are shown per date.

3.2. Experiment 2
3.2.1. Calibrations

Figure 5a displays the direct calibrations at a transect scale between pasture biomass
and PR height and Figure 5b between pasture biomass and NDVI. The two dates were
combined into a single linear regression for the PR due to a higher R2, while two separate
exponential regressions were kept for the NDVI. The variability explained by the UAV
was lower for these calibrations (R2 0.57 and 0.38) compared to the PR (R2 0.62). Figure 5c
illustrates the indirect calibration for the UAV, which explains a similar variability as the
direct calibration for the PR (R2 0.62).
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Figure 5. Equations for direct calibration of pasture reader height (a) (•), and Normalised Difference
Vegetation Index (NDVI) (b) (•) for conversion into pasture biomass (kg DM/ha). (c) (•) presents the
indirect calibration equation for converting NDVI into pasture biomass, which involves calibrating
NDVI using a calibrated PR.

3.2.2. Variability between Treatments

The variability between fertilisation treatments (30, 60, and 90 kg N/ha) was analysed
using different methodologies, and the results are presented in Figure 6. The statistical
analysis showed that the interaction between date and treatment was significant (p < 0.05)
for NDVI, height, and pasture biomass estimated using different calibration methodolo-
gies. This indicates that the curves representing the treatments were different in all the
analyses presented.
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Figure 6. Average NDVI, height and pasture biomass (kg DM/ha) estimated using NDVI or height per
date. Coloured lines indicate different nitrogen fertilisation treatments; 30 kg N/ha (—); 60 kg N/ha
(—); 90 kg N/ha (—). The curves were smoothed using locally estimated scatterplot smoothing
(LOESS), and the grey area around the curves represents the 95% confidence interval (CI).

3.3. Experiment 3

Exponential relationships between pasture biomass obtained from a PR and from
NDVI (Planet satellite) for kikuyu and ryegrass pastures were analysed at the transect and
paddock scale (Figures 7 and 8). The calibration curves for kikuyu had a higher accuracy
(R2 > 0.86) than for annual ryegrass (R2 ranging from 0.24 to 0.51). The comparison of
NDVI values extracted with the PR position (transect scale) and the average NDVI and
pasture biomass of the entire paddock (paddock scale) provided similar results. The RMSE
and R2 values were also similar when comparing the use of satellite images acquired on
the same date of the PR measurement (0 d) versus the average of the images available ±1,
2, 3 and 4 days (1 d, 2 d, 3 d, 4 d) from the PR measurement. This was similar either for
kikuyu and ryegrass and for the transect and paddock scale methodologies. The RMSE for
0 d and kikuyu was ~226 kg DM/ha, and the R2 was 0.89 and 0.88 (transect and paddock
scale, respectively); for 0 d and ryegrass, the RMSE was 346 and 405 kg DM/ha and the R2
was 0.42 and 0.38 (transect and paddock scale, respectively).
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4. Discussion

In this study, we conducted a series of experiments to evaluate the effectiveness
of ground-based sensors, UAVs, and satellites under various growing conditions, using
different calibration types (direct and indirect) and scales (quadrat, transect, paddock).

In the first experiment, we employed a direct calibration approach at a quadrat scale to
evaluate the ability of PR, RPM, and UAV to estimate pasture biomass. While this method-
ology presented challenges for on-farm practicality and broader applicability, measuring
a quadrat by fixing the UAV to an arm reduced errors associated with the positioning
system [28,34], and it can be considered a gold standard calibration. The sensor used
also enabled the calculation of NDRE, which has been shown in previous studies to have
greater sensitivity at higher biomass levels than the NDVI [30]. However, in the three dates
evaluated, NDRE had a lower correlation with pasture biomass than NDVI. Among the
different sensors, reflectance indices and the PR had lower R2 than the RPM, particularly
during late phases of pasture growth (when transitioning into reproductive stages), which
was also observed in prior studies [11,26,35]. In the case of the PR (which measures pasture
height), this could be due to the structure of the plants and the inability to distinguish
stem or seed head from leaf [36]. Furthermore, vegetation indices are significantly affected
by standing senescent material [37]. Conversely, the RPM measures compressed height,
which is a combination of pasture height and biomass. Figure 4 also illustrates that a single
equation for calibrating NDVI might not achieve high accuracy if traditional regression
models are used to estimate biomass, as also noted by Gargiulo et al. [15]. Thus, different
calibration curves may be needed during periods of high pasture growth or when the
pasture is transitioning to the reproductive stage [38]. However, given the impracticality of
applying a direct calibration at a quadrat scale on-farm, other methodologies with similar
potential accuracy, but easier implementation should be considered instead.

The second experiment aimed to evaluate more practical calibration methodologies
at a transect scale for the PR and UAV, and to compare the detection of differences in
pasture biomass between nitrogen treatments. In contrast to the first experiment, this was
conducted on a commercial dairy farm over a more extended period. The PR calibration
showed similar results to E1. However, the direct NDVI calibration method using pasture
cuts was less effective in E2 (R2 of 0.57 and 0.38 for E2 compared to an R2 of 0.87 for the first
two calibrations of E1). This difference may be due to the larger scale of measurement and
inaccuracies in the positioning system used in E2 in contrast to E1 where the UAV was fixed
with an arm to a quad bike [34]. On the other hand, the indirect method (i.e., extracting
NDVI from the paddock and calibrating it using the calibrated PR) showed a greater
association and was similar to that obtained with the PR. Averaging a whole paddock
reduced errors associated with the positioning system, making the methodology easier
to implement by only requiring the measurement of the average height of the paddock.
However, since the NDVI is calibrated indirectly, errors in the PR calibration will add up,
so achieving a good initial conversion of height into pasture biomass is essential [28,39–41].

Assessing variability within and between paddocks is crucial in determining the
effectiveness of any calibration method. In experiment 2 (E2), we demonstrated that both
PR height and NDVI were effective in detecting such variability with respect to biomass.
We observed that after the date of nitrogen application (13 August), the average NDVI and
height increased with pasture growth, and differences between treatments of 30 kg N/ha
and 60–90 kg N/ha were detectable at each measurement. These findings are consistent
with previous studies that have used satellite-based NDVI and other reflectance indices to
identify differences in pasture chlorophyll, nitrogen content, and biomass [42–44]. When
converting NDVI and height curves into pasture biomass using the calibrations, we found
that the indirect NDVI method detected differences in pasture biomass more accurately
than the other methods (Figure 6). The difference in the type of curve used to convert NDVI
or height into pasture biomass may partially explain this result. The exponential curves
employed for the UAV calibrated indirectly show that changes in NDVI values (mainly at
higher levels of pasture biomass) produced greater differences in pasture biomass than the
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linear equation used for the PR [45]. These findings emphasise the importance of selecting
an appropriate calibration function, considering not only model accuracy metrics such as
RMSE or R2 but also the type of curve utilised [46,47].

On the other hand, Experiment 3 aimed to test the effectiveness of indirect calibrations
of NDVI (Planet satellite) with pasture biomass derived from height (C-Dax PR). The ex-
periment was conducted at a larger scale (paddock) over a year and with different pasture
species (kikuyu and ryegrass). The calibrations using satellite images on the same date of
the ground measurement (0 d) achieved a better accuracy (RMSE of 226–405 kg DM/ha)
compared to previous studies conducted in Australia using indirect calibrations and ma-
chine learning models. For instance, Asher et al. [48] reported an RMSE between 374 and
610 kg DM/ha for different farms using Planet satellites, while Chen [49] reported RMSE be-
tween 324 and 655 kg DM/ha using Sentinel-2 data (lower resolution satellite). Surprisingly,
we found that the calibrations for kikuyu were more accurate than for ryegrass, despite
the former having a higher proportion of stem and dead material, which can impact the
calibrations [50]. It is important to mention that the perceived accuracy of the measurement
method is crucial for its adoption by farmers, as many of them would not adopt a method
with differences greater than 300 kg DM/ha. Hence, any alternative to the RPM or PR will
require farmers’ acceptance and their perception of accuracy. Acknowledging this aspect is
important for the widespread adoption of satellite technology [27].

Moreover, the results of Experiment 3 indicated that calibrations using either images
acquired on the same date as the ground measurements or an average of images within
±four days of the ground measurements produced similar outcomes. It can be challenging
to obtain an image for the exact date of ground measurements due to satellite temporal
resolution or atmospheric conditions, such as cloud cover or light [21]. However, using
the average of multiple images expands the possibilities of more observations available
for the calibrations. This aligns with the methodology used by Mata et al. [51] in New
Zealand, where the RPM measurements were limited to ±4 days of the image acquisition,
achieving a relatively good accuracy (R2 of 0.71 and a residual standard error of 260 kg
DM/ha). Additionally, we found no differences between using either the average value
for the whole paddock or the image pixel matched to the associated height reading (if the
transect and pixel selection is representative of the paddock). Mata et al. [51] calibrated
the satellite NDVI at a pixel level, but to achieve between 10 and 20 readings per pixel, an
operator walked four transects of 60 m and 15 m apart, taking readings every 1 m (which
requires significant effort and time). In that experiment, the operator used a GNSS with a
positional accuracy of ±5 m, introducing another source of error to the measurements. The
advantage of using the average of the whole paddock is threefold: it avoids the impact of
misalignments of the positioning system of the satellite and the PR, is easier to implement,
and allows the use of devices that may be already available on-farm, such as PR or RPM
with no GNSS.

There are some limitations that need to be considered in interpreting the results of this
study. Firstly, the experiments were conducted over different time periods, with E3 being
carried out at a later time than E1 and E2. This disparity in timing may prevent a direct
comparison of the methods’ performance in estimating pasture biomass. Additionally,
two of the experiments focused on areas of less than 5 hectares, leading to limited obser-
vations and potential variability in the results. This may restrict the generalizability and
applicability of the findings to other contexts. Moreover, the study mainly concentrated on
single-species pastures, whereas the prevalence of multispecies pastures in dairy farming
necessitates further investigation into the implementation of this methodology in such
settings. It is likely that the proportion of different species in the mix may be an important
factor to account for in future models [52,53].

Devices used for measuring pasture biomass can collect data with varying levels of
frequency and accuracy. While traditional regression models can achieve high accuracy,
they require site-specific calibrations and may not always be practical due to time con-
straints or other limitations [15,49]. In contrast, our study aimed to improve the accuracy
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of pasture monitoring while significantly reducing labour input by applying more practical
and easier-to-implement calibration methods. In this regard, we found that the calibrated
RPM could achieve high accuracy but requires significant labour input. The PR could
reduce the time required to monitor the farm, but factors such as the reproductive stage of
the pasture can affect the accuracy. The UAV has a higher resolution than the satellite and
provides the opportunity of producing 3D models of the paddocks (through photogramme-
try, Structure-from-Motion or LiDAR), to improve estimations of spectral indices [18,54].
However, still, significant time is required to conduct flights and process data and has
limitations such as the proximity to airports and battery life. On the other hand, satellites
can provide significant labour savings, but calibrations are still required for high accuracy.

In this study, we found that the best approach to achieve high accuracy and labour
savings is to indirectly calibrate satellite NDVI from RPM height measurements, using the
average of all observations from the whole paddock (providing the paddock is relatively
homogenous) (Table 2). Height measurements can then be converted to pasture biomass
using a generic equation or, ideally, site-specific calibrations. Our study also demonstrates
that it is possible to use the average of several images within up to±four days of the ground
measurements instead of limiting the method to images captured on the exact date. Further
research is still needed to determine how often calibrations should be conducted throughout
the year. These results demonstrate promising potential for on-farm implementation of
these technologies. However, it is crucial to acknowledge that their accuracy is inherently
influenced by specific farm management factors. Therefore, it is essential for farmers to be
well informed about these limitations in order to make informed decisions regarding the
utilisation of the data provided by these technologies.

Table 2. Summary results of the three experiments and calibration methodologies conducted in the
study to estimate pasture biomass.

Experiment Species Calibration
Type 1

Calibration
Scale 2

Labour
Requirement

R2

RPM PR UAV SAT

1 Ryegrass Direct Quadrat High 0.86 0.64 0.54

2
Ryegrass Direct Transect High 0.62 0.47 †

Ryegrass Indirect Transect Medium 0.62

3
Ryegrass/Kikuyu

Indirect
Transect Medium 0.65 *

Ryegrass/Kikuyu Paddock Low 0.63 *
1 Direct = pasture cuts conducted to calibrate the sensors; Indirect = no pasture cuts conducted, the sensor was
calibrated using another sensor (satellite or UAV calibrated using pasture height obtained from a PR or RPM);
2 Quadrat = calibrations conducted in quadrat of 0.25 m2; Transect = calibrations conducted in transects or rows,
instead of quadrat; Paddock = calibrations obtained from measurements from the whole paddock. † Average R2

for the two regression curves presented in Experiment 2; * Average R2 for Ryegrass and Kikuyu in 0 d.

5. Conclusions

In this study, we tested various sensors and calibration methodologies to estimate
pasture biomass. We found that the most practical calibration method for satellites and
UAVs would be to conduct an ‘indirect’ calibration at a ‘paddock’ scale. This involves
selecting paddocks with contrasting pasture biomass, obtaining the average NDVI and
pasture height for each paddock, and then transforming pasture height into biomass using
a generic equation or, preferably, a site-specific equation obtained through pasture cuts.
The use of the RPM is recommended over the PR for calibrating NDVI due to its accuracy,
practicality, and affordability. Calibrations could be conducted sporadically throughout
the year and subsequently applied to other paddocks and dates with available images. If
the paddock is sampled correctly, the entire paddock’s average can be used, and devices
with GNSS are not required. Moreover, the average of images taken up to ±4 days of
ground measurements can be used instead of relying solely on images taken on the same
day. These findings can serve as a basis for conducting further investigations on calibration
methodologies for satellite remote sensing in the context of pasture monitoring.
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